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Introduction

The problem of describing the statistics of a large number xi, xj ,... of interacting random variables
emerged in physics with Boltzmann’s efforts to lay principles of thermodynamics on statistical grounds.
High dimensional statistics are now also expected to provide with reasonable and tractable models in
artificial intelligence and biology. Aimed at modelling the emergence of collective behaviours in large
assemblies of constituents, the prism of statistics hence shows deep analogies between atoms in a
crystal, and neurons in a network.

A probability distribution p(x) on the joint variable x = (xj)j∈Ω is usually assumed to capture all
collective phenomena, although a dimensional curse prohibits the computation of expectation values.
Their local effects on a small subset α ⊆ Ω of variables may nonetheless be estimated, as statistics
of the local joint variable xα = (xi)i∈α only involve its marginal distribution pα(xα), which lives in a
space of reasonable dimension.

Accessing marginals is a crucial step of statistical learning. Usually appearing in the gradient of a
loss function, they are necessary to guide the update of model parameters. Message-passing algorithms
estimate marginals through a parallelised and asynchronous computing scheme, in which a collection of
local units communicate until they eventually reach a consensual state. Such algorithms best leverage
on the local structure of the probabilistic model, described below.

Gibbs random fields1 are probabilistic models associated to a collection X of subsets α, β, γ,... of Ω
over which the global distribution p(x) factorises as a product of local functions. We write p ∈ G(X)
when there exists a collection of positive factors (fα) such that:

p(x) = 1
Z

∏
α∈X

fα(xα) (1)

Distributions of this form are more often called graphical models in the computer science literature.
The hypergraph X ⊆ P(Ω) is then represented by the so-called factor graph, depicted in figure 1,
formed by joining variable nodes (xi) with their associated factor nodes (fα). Positivity of the factors
implies that p may be written as the exponential family:

p = e−H

Z
where H(x) =

∑
α∈X
− ln fα(xα) (2)

In physics, p is called the Gibbs state associated to the hamiltonian H, also called total energy. One
should also be prepared to encounter the name of energy-based model and its acronym EBM, in the
context of Boltzmann machines for instance.

1Or Gibbs distributions, which are also Markov random fields according to the Hammersley-Clifford correspondence.
Factorisability however yields a finer characterisation of G(X) than Markov properties, hence the preferred terminology.
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Figure 1: (a) factor graph and (b) Venn representations of X ⊆ P(Ω).

Our main contribution is to view Gibbs random fields as homology classes of factors. The 1-chains
(mαβ) resolving the ambiguity of the parametrisation (1) of p by the factors (fα) are called messages.
They may be iterated upon by following the sum-product update rule of belief propagation for instance.
The differential structure is however best presented additively, at the level of energies or log-likelihoods.

The following is an abstract of a PhD work done under the kind supervision of D. Bennequin, to
which I am greatly indebted. I also wish to thank G. Sergeant-Perthuis and J.P. Vigneaux, for the
early and ongoing fruitful collaborations without which this work would not have been possible.

The initial data we shall start with is a collection (Ei)i∈Ω of finite sets, indexed by a finite set Ω,
describing the configuration space of each individual variable xi for i ∈ Ω. Binary variables Ei = {±1}
already cover many applications, from the Ising model to Hopfield networks [6].

1 Statistical Systems and Functors

Regions. The powerset
(
P(Ω),⊇

)
is a category for its partial order structure. We write:

α→ β ⇔ α ⊇ β

A collection of subsets2 X ⊆ P(Ω) has the same arrows as a subcategory. Such a regionalisation X is
assumed chosen pragmatically. Note that X could for instance be a lattice (Ising), a fully-connected
graph (Hopfield) or more generally, a covering of Ω by subsets of reasonable size.

Microstates. Identify E with the functor E : P(Ω)→ Set lifted to subsets by:

Eα =
∏
i∈α

Ei

For every β ⊆ α, denote by πβα : Eα → Eβ the canonical projection, which forgets the microstate of
variables outside β. The collection (E, π) is also called a projective system of sets. Viewing Ω as a
discrete topological space, the functor E : P(Ω)→ Set moreover forms a sheaf of sets over Ω.

Observables. Denote by A = RE the functor A : P(Ω)op → Alg of functions over microstates:

Aα = REα =
⊗
i∈α

Ai

For every β ⊆ α, denote by jαβ : Aβ → Aα the pull-back of πβα, which canonically extends a function
on Eβ to Eα. Note that we shall keep extensions implicit and simply write fβ(xβ) = fβ(πβα(xα)).
The pair (A, j) is also called an inductive system of algebras.

2A collection of subsets is often called a hypergraph, as combinatorial graphs are a particular case where subsets have
cardinalities 1 and 2. The term regionalisation comes from Yedidia et.al. [20]
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Measures. Denote by A∗ : P(Ω)→ Vect the functor of linear forms over observables.

A∗α = L(Aα,R) ' REα

For every β ⊆ α, denote by Σβα : A∗α → A∗β the adjoint of jαβ , push-forward of measures by πβα. The
map Σβα performing partial integration over the state of variables in α r β, is often called marginal
projection. The pair (A,Σ) forms a projective system of vector spaces.

Statistical States. Denote by ∆̄ : P(Ω)→ Conv the restriction of A∗ to probability densities:

∆̄α =
{
pα ∈ A∗α

∣∣∣ 〈 pα | 1 〉 = 1 and ∀fα ∈ Aα 〈 pα | f2
α 〉 ≥ 0

}
We shall also denote by ∆α the interior of ∆̄α formed by non-degenerate probability densities. The
pair (∆,Σ) forms a projective system of convex topological spaces.

2 Energy Conservation and Homology

Observable Fields. There is a canonical lifting of A : Xop → Alg to a functor on the nerve3 of X
which we still denote by A : N(X)→ Alg, defined by letting for all ᾱ = α0 ⊇ . . . ⊇ αp ∈ Np(X):

Aα0...αp ' Aαp

Note that whenever ᾱ ∈ Nk(X) is a subface of β̄ ∈ Np(X) with k ≤ n, one has αk ⊇ βp so that Aβ̄
canonically injects into Aᾱ. The graded vector space A•(X) is then defined by letting for all p ∈ N:

Ap(X) =
⊕

ᾱ∈Np(X)

Aᾱ

A 0-field (uα) ∈ A0(X) is hence a choice of an observable uα ∈ Aα for every α ∈ X.

Boundary Operator. The simplicial structure of N(X) yields a chain complex (A•(X), δ). This
construction was considered by Grothendieck and Verdier in SGA-4-V [18] under the name of canonical
projective resolution for presheaves. The action of the first degree boundary δ : A1(X)→ A0(X) on a
flux

(
ϕαβ(xβ)

)
is given by:

(δϕ)β(xβ) =
∑
α′⊇β

ϕα′β(xβ)−
∑
β⊇γ′

ϕβγ′(xγ′)

Energy Conservation. Given two collections of interaction potentials (uα) and (u′α) in A0(X):

∃ ϕ s.t. u′ = u+ δϕ ⇒
∑
α

uα =
∑
α

u′α

The converse implication, proved in [12, 13], strongly relies on the interaction decomposition theorem
[9, 7] which characterises direct sum splittings of each Aα as

⊕
β⊆α Zβ . It expresses that the homology

class of (uα) is completely characterised by its total energy:

HΩ(xΩ) =
∑
α

uα(xα)

3The p-nerve Np(X) of X is the set of p-chains ᾱ = α0 ⊇ . . . ⊇ αp in X. It should not be confused with the Čech
nerve of X viewed as a covering, considered in a similar setting in [1], whose construction is related to ours in [2]. Given
any category C, its nerve N•(C) is a simplicial set, occuring for instance in the construction of classifying spaces [16].
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3 Marginal Consistency and Cohomology

Measure Fields. The functor of measures A∗ : X → Vect reciprocally extends to the nerve of X as
a functor A∗ : N(X)op → Vect by duality. We shall also denote by:

∆0(X) =
∏
α∈X

∆α

the convex subset of A∗0(X) formed by non-degenerate probability densities.

Differential. Measure fields naturally form a cochain complex (A∗•(X), d) with d = δ∗. The action
of the differential d : A∗0(X)→ A∗1(X) on a field (qα) is given by:

(dq)αβ(xβ) = qβ(xβ)−
∑

y∈Eαrβ

qα(xβ , y)

Marginal Consistency. A collection of measures (qα) ∈ A∗0(X) is said consistent when qβ is the
marginal of qα for every β ⊆ α. Hence (qα) is consistent when it is a 0-cocycle, satisfying dq = 0, i.e.
qβ = Σβα(qα) for all β ⊆ α. We denote by:

Γ(X) = ∆0(X) ∩Ker(d)

the space of consistent positive probability densities, which is the projective limit of the system (∆,Σ).

4 Message-Passing: Dynamics and Equilibria

Local Gibbs States. The Legendre duality4 between energy and statistical state translates to local
fields, associating to interaction potentials (uα) ∈ A0(X) the collection of beliefs (qα) ∈ ∆0(X) by:

qα = e−Uα
Zα

where Uα =
∑
β⊆α

uβ (3)

We shall write U = ζ · u to denote the bijective correspondence [15] between local hamiltonians and
interaction potentials. We also write q = [e−U ], letting the bracket denote normalisation.

Statistical Diffusion. We introduce the ordinary differential equation in A0(X) defined by:

du

dt
= δ
(

D(ζ · u)
)

with D(U)αβ = Uβ + ln
(
Σβα(e−Uα)

)
(4)

We shall rewrite (4) as u̇ = δΦ(u) where Φ : A0(X)→ A1(X) is the smooth flux functional5 Φ = D ◦ ζ.
We show in [13] that the belief propagation algorithm introduced by Gallager [5], popularised by Pearl
[11] and later generalised in [20], is equivalent to the time-step-1 explicit Euler scheme of (4):

BP : u(t+ 1)← u(t) + δΦ(u(t)) (5)

The witnessed unstable behaviour of BP, sometimes compared to a kind of «phase transition» [14],
should be expected from the Lipschitz bound of Φ tending to 1 as beliefs go the boundary of ∆0(X).
We hence strongly advise for the use of smaller-time-step integrators BPλ of the ODE (4).

4The free energy functional F (H) = − ln Σ e−H is conjugated to the Shannon entropy functional S(p) = −Σ p ln(p).
This Legendre duality puts in correspondence hamiltonians with statistical states at equilibrium.

5Extending the zeta transform ζ and its inverse µ = ζ−1 to the higher degrees of A•(X), we propose in [13] another
flux functional φ = µ ◦ D ◦ ζ, correcting the redundancies counted in the generalised BP algorithm of [20].
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Equilibria. Stationary states of (4) lie at the intersection of a homology class [h] = h+ δA1(X) with
a manifold Z(X) of consistent interaction potentials, mapped onto6 Γ(X) by the smooth application
A0(X)→ ∆0(X) defining local Gibbs states (3):

Z(X) =
{
u ∈ A0(X) | D(ζ · u) = 0

}
To approximate the marginals (pα) of a global probability distribution pΩ = [e−HΩ ], message-passing
algorithms hence seek for consistent beliefs (qα) ∈ Γ(X) deriving from interaction potentials (uα) ∈ [h]
that preserve the total energy HΩ.

Bifurcations. In general7, multiple stationary states coexist in a given homology class, as numerical
experiments have already shown [19, 8]. We relate this phenomenon to singularities of the homological
projection Z(X)→ H(X), which occur when TuZ(X) ∩ δA1(X) is non-trivial.

Denoting by B(X) ⊆ TA0(X) the sub-bundle of tangent vectors spanned by δA1(X) and restricted
above Z(X), consider the linearised diffusion flow8:

L = δ∇ζ ∈ Hom
(
B(X),B(X)

)
Following Thom [17], the corank of L induces a decomposition of Z(X) as the stratified space

⊔
k Sk,

where L is invertible on the dense subspace S0, complement of the analytic subspace S̄1 of singularities.
Explicit examples of such bifurcations can be exhibited on simple graphs with more than two loops,
e.g. on the join of two triangles by a vertex or an edge [13].

Conclusion

The algebraic and geometric structure of Gibbs random fields allows for a better understanding of
the purpose and behaviour of message passing algorithms. Although non-linear, the present theory
shows many similarities with the usual theory of harmonic forms. Its main difference is the central
role played by the zeta transform in defining local hamiltonians from interaction potentials.

We would also like to mention the equivalence of message-passing stationary states with critical
points of the Bethe free energy functional [4, 10], a local approximation of the global free energy. In
this dual picture, flux terms δϕ appear as Lagrange multipliers for the consistency constraint dq = 0
imposed on beliefs [20, 13]. These two point of views shed a different light on the benefits brought by
combinatorics to statistics.

We believe that viewing the transport equation (4) as an ODE is extremely important for stability
concerns. As of today, the few simulations we have run showed dramatic change of behaviour when
turning the time steps from 1 to 0.1. More experiments are called for and should soon be provided.
Note that shorter time steps appear as exponents in the usual multiplicative formalism, this perhaps
explains why such a simple improvement of belief propagation came unnoticed.

An extension of the present constructions to quantum statistics may also be carried out naturally.
In the quantum setting, instead of microstates, one would start with a functor of non-commutative
observables algebras A : Xop → Alg. The non-linear correspondence (3) can be extended to the
case of quantum states represented by non-degenerate density matrices. One may then estimate the
local effects of the time evolution operator eitH and the marginals of the density matrix e−θH by
message-passing algorithms eitherwise.

6The action of region-wise additive constants R0(X) on Z(X) spans the reciprocal image of Γ(X) under (3).
7When X is an acyclic graph, BP is known to converge in finite time to the exact marginals of the global Gibbs

state. This result may be extended to a wider class of acyclic hypergraphs, but fails when X is a graph with loops.
8The differential ∇ = D∗ acts on local hamiltonians by ∇(U)β = Uβ −Eqα [Uα |β]. It is the adjoint of δ for a metric

induced by the consistent local Gibbs states (qα).
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