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Introduction

The problem of describing the statistics of a large number xi, xj ,... of interacting random variables
emerged in physics with Boltzmann’s efforts to lay principles of thermodynamics on statistical grounds,
and high dimensional statistics are now expected to provide with reasonable and tractable models in
artificial intelligence and biology. Aimed at modelling the emergence of collective behaviours in large
assemblies of constituents, the prism of statistics hence shows deep analogies between atoms in a
crystal, and neurons in a network.

A probability distribution p(x) on the joint variable x = (xj)j∈Ω is usually assumed to capture all
collective phenomena, although a dimensional curse prohibits the computation of expectation values.
Local effects on a small subset α ⊆ Ω of variables may nonetheless be estimated, as the statistics of the
local variable xα = (xi)i∈α only involve the marginal distribution pα(xα). Spontaneous magnetisation,
for instance, is given by the expectation value of a single atomic dipole xi = ±1, subject to interactions
within an arbitrary large crystalline network. Accessing marginals is also a crucial step of statistical
learning: usually appearing in the gradient of a loss function, they are necessary to guide the update of
model parameters. The design of efficient algorithms for marginal estimation is hence of great practical
importance. Message-passing algorithms estimate marginals through a parallelised and asynchronous
computing scheme, in which a collection of local units communicate until they eventually reach a
consensual state. Understanding their connections with algebraic topology was the first motivation of
this thesis.

Gibbs random fields1 are probabilistic models with a local structure described by a collection X of
subsets α, β, γ,... of Ω, over which the global distribution p(x) factorises as a product of local functions.
We write p ∈ G(X) when there exists a collection of positive factors (fα) such that:

p(x) = 1
Z

∏
α∈X

fα(xα) (1)

Distributions of this form are more often called graphical models in the computer science literature.
The hypergraph X ⊆ P(Ω) is then represented by the so-called factor graph, depicted in figure 1,
formed by joining variable nodes (xi) with their associated factor nodes (fα). This factorisation is
more conveniently viewed at the level of energies, where the hamiltonian H is defined as a sum of local
interaction potentials (uα), related to the factors by uα = − ln fα:

p = e−H

Z
where H(x) =

∑
α∈X

uα(xα) (2)

The fundamental Legendre duality between the energy function H(x) and its Gibbs distribution p(x)
is related to variational principles on entropy and free energy, of which message-passing algorithms
yield approximate solutions.

One of our contributions is to view the Gibbs random field p ∈ G(X) as a homology class of factors.
Introducing mutual dependence of variables, overlapping subsets in X also make the parametrisation

1Or Gibbs distributions, which are also Markov random fields according to the Hammersley-Clifford correspondence.
Factorisability however yields a finer characterisation of G(X) than Markov properties, hence the preferred terminology.
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Figure 1: (a) factor graph and (b) hypergraph representations of X ⊆ P(Ω).

of p(x) given by equation (1) ambiguous, two collections of factors (fα) and (f ′α) defining the same
Gibbs random field whenever

∏
α fα '

∏
α f
′
α up to a scaling factor. This ambiguity is resolved by

introducing messages as collections (mαβ) of local functions mαβ(xβ) for every ordered pair α ⊇ β in
X, and a boundary operator ∂ defining factors from messages through:

(∂m)β =
∏
α⊇β

mαβ

/∏
γ⊆β

mβγ (3)

Assuming X is closed under intersection, we show that (fα) and (f ′α) define the same Gibbs random
field if and only if there exists (mαβ) such that f ′ ' f ·∂m up to scaling. In this view, message-passing
algorithms explore a homology class of factors by iterating over messages, the homological constraint
expressing conservation of the global distribution p ∈ G(X).

Beliefs (qα) are intended to estimate the local marginals (pα) of the global probability distribution.
These local probabilities should in particular satisfy consistency conditions which require that qβ is the
marginal of qα for every β ⊆ α. Of cohomological nature, this constraint shall take the form dq = 0
and is expressed by the following set of equations:

qβ(xβ) =
∑

y∈Eαrβ

qα(xβ , y) (4)

Defining local probabilities through the local analog of equation (1):

qα(xα) = 1
Zα

∏
β⊆α

f ′β(xβ) (5)

the specificity of message-passing algorithms is hence to search for consistent beliefs that derive from
homologous factors f ′ = f ·∂m. The most general message-passing scheme, belief propagation, assumes
the following update rule:

mαβ(xβ)← mαβ(xβ) ·
∑
y qα(xβ , y)
qβ(xβ) (6)

Our main contribution is to introduce diffusion equations of the form u̇ = δΦ(u) on interaction
potentials, which allow to view existing message-passing algorithms as coarse numerical integrators
of continuous-time differential equations. The operator δ is the first-degree boundary of a natural
homology theory, acting on a collection of energy fluxes ϕαβ(xβ) by:

δβϕ(xβ) =
∑
α⊇β

ϕαβ(xβ)−
∑
β⊇γ

ϕβγ(xγ) (7)

In addition to revealing their deeply homological character, this approach should dramatically improve
the stability2 of message-passing algorithms. Showing belief propagation equivalent to a time-step-one

2Belief propagation has for instance been reported to start converging poorly after several epochs of training restricted
Boltzmann machines, a brutal phenomenon that has been compared to phase transitions of the Hopfield model.
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explicit Euler scheme of u̇ = δΦ(u), a first and highly advisable improvement is to use a smaller time
step λ < 1, which would act as an exponent on the geometric increment of mαβ in equation (6). As
another direction of improvement, we propose a combinatorial correction of messages eliminating their
redundancies by extending Möbius inversion formulas to higher degrees. A practical question which
shall remain open is whether there exists a notion of optimal transport on Φ bringing interaction
potentials to equilibrium.

Our approach reveals that stationary states of message-passing algorithms lie at the intersection
of two constraint surfaces, of homological and cohomological nature respectively. The homological
constraint is linear at the level of interaction potentials, and expresses conservation of the total energy:

H(x) =
∑
α∈X

uα(xα) (8)

The cohomological constraint dq = 0, however, is linear at the level of the effective Gibbs states:

qα = e−Uα
Zα

with Uα(xα) =
∑
β⊆α

uβ(xβ) (9)

The problem of describing this intersection is hence highly non-linear, and trying to understand how
the geometry of the underlying hypergraph X affects the geometry of message-passing equilibria will
lead to difficult questions meeting both algebraic topology and singularity theory.

∗ ∗ ∗

Out of the six chapters contained in this thesis, chapters 1 to 3 review and develop the algebraic
theory we shall rely upon. Energy and information functionals are covered in chapter 4, providing
background for the central theorem 4.22 characterising solutions of Kikuchi’s cluster variational method
[11] i.e. consistent collections of local probabilities which are critical for a generalised Bethe free energy.

Message-passing algorithms are then addressed in chapter 5, as discrete integrators of continuous-
time3 diffusion equations u̇ = δΦ(u). The homological picture allows us to give a rigorous proof
of the correspondence theorem 5.13 between stationary states of belief propagation and solutions of
the cluster variational method, as suggested by Yedidia et al. [34]. Our approach more generally
characterises all the flux functionals Φ for which such a correspondence holds, while the combinatorics
developed in chapter 3 lead us to propose another regularisation of the generalised belief propagation
algorithm by a degree-one Möbius inversion4 on the flux functional Φ.

The geometry of message-passing equilibria is finally studied in chapter 6. We describe a class
of retractable hypergraphs for which message-passing always converges to the exact marginals of the
global probabilistic model to estimate. In general, multiple equilibria may coexist, whose bifurcations
are related to singularities of the projection of a smooth manifold of consistent potentials onto their
homology classes, and may be tracked in the spectrum of a linearised diffusion operator.

Our first efforts consisted in looking for a formalism in which the elementary operations of message-
passing algorithms would fit. The reader is therefore expected to run into some unusual notations and
properties, which the following few pages attempt to summarise efficiently. With these in mind, we
hope that an informed reader mostly curious of applications might jump directly to chapter 5.

3The time step of the integrator may be tuned < 1 to improve stability, analogously to a learning rate.
4Möbius inversion eliminates redundancies otherwise counted in the heat flux Φ.
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Statistical Systems
A system will be defined by a collection of random variables xi, xj , xk, . . . indexed by labels i ∈ Ω.

The set of labels Ω in general has an additional geometric structure describing interactions (e.g. graph or hypergraph).

Subsets α, β, γ, . . . in P(Ω) form a partial order for inclusion, usually denoted in descending alphabetical order:
α ⊇ β ⊇ γ

Local Spaces

Given a finite set of microstates Ei for every atom/neuron/bit i ∈ Ω and a subset of atoms α ⊆ Ω:
− Eα =

∏
i∈α Ei set of local microstates: xα = (xi)i∈α ∈ Eα

− Aα = REα algebra of local observables: fα(xα) ∈ Aα
− A∗α ' REα vector space of local measures: qα : fα 7→ 〈 qα | fα 〉 ∈ A∗α
− ∆α ⊆ A∗α convex set of positive local probabilities: pα > 0 and

∑
xα

pα(xα) = 1

Local Operators

For every α ⊆ Ω and β ⊆ α:
− πβα : Eα −→ Eβ natural projection = restriction xα 7→ xβ

πβα : (xi)i∈α 7→ (xi)i∈β
− jαβ : Aβ −→ Aα natural extension5 = inclusion Aβ ⊆ Aα

jαβ(fβ)(xα) = fβ(xβ)
− Σβα : A∗α −→ A∗β partial integration = marginal projection

Σβα(qα)(xβ) =
∑

x′∈Eαrβ

qα(xβ , x′)

− Eβαpα : Aα −→ Aβ conditional expectation w.r.t. pα ∈ ∆α given β

Eβαpα (fα)(xβ) = Epα [fα | xβ ] =
∑

x′∈Eαrβ

pα(xβ , x′) fα(xβ , x′)
pβ(xβ)

− Fβα : Aα
C∞−→ Aβ conditional free energy of α given β = effective energy

Fβα(fα)(xβ) = − ln
∑

x′∈Eαrβ

e−fα(xβ ,x′)

Local Duality

− natural duality bracket 〈− |− 〉 : A∗α ⊗Aα −→ R

〈 qα | fα 〉 =
∑

xα∈Eα

qα(xα) fα(xα)

− covariance metric 〈− |− 〉pα : Aα ⊗Aα −→ R induced by a local probability pα ∈ ∆α〈
fα
∣∣ gα 〉

pα
= Epα

[
fα gα

]
=
∑

xα∈Eα

pα(xα) fα(xα) gα(xα)

Properties

− Adjunction of Σβα and jαβ for the natural duality brackets:

〈Σβα(qα) | fβ 〉 = 〈 qα | jαβ(fα) 〉

− Adjunction6 of Eβαpα and jαβ for the metric induced by pα on Aα〈
Eβα(fα)

∣∣ gβ 〉Σβα(pα)
=
〈
fα
∣∣ jαβ(gβ)

〉
pα

− Gibbs state conditional expectations7 from effective energies: Eβαpα = dFβαHα

Epα [fα|xβ ] = Fβα(Hα + fα)− Fβα(Hα) + o(fα) for pα =
1
Zα

e−Hα

5 jαβ coincides with the identity map w.r.t. the inclusion Aβ ⊆ Aα, we shall therefore simply write fβ for jαβ(fβ).
6 Eβα is the orthogonal projection of Aα onto Aβ ⊆ Aα for the covariance metric 〈− |− 〉pα .
7Gibbs state expectation Eαpα = E∅α

pα is the differential of the free energy functional dFαHα = dF∅α
Hα

,
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Fields

Suppose given a covering X = {α, β, γ, . . . } of Ω by subsets s.t. α ∩ β ∈ X for every α, β ∈ X.

n-Fields8 are collections {fα0...αn ∈ REαn |α0 ⊃ . . . ⊃ αn ∈ X} of local observables indexed by n-chains in X.

Field Spaces

− A0(X) =
∏
α
REα space of potentials

− A1(X) =
∏
α⊃β REβ space of currents

− An(X) =
∏
α0⊃...⊃αn

REαn space of local observable n-fields

− ∆0(X) =
∏
α

∆α ⊆ A∗0(X) convex space of positive beliefs

− Γ(X) ⊆ ∆0(X) convex subset of consistent beliefs: p ∈ Γ(X) iff pβ = Σβα(pα) for all α ⊇ β.

Differential Operators9

− δ : A1(X) −→ A0(X) divergence

δ(ϕ)β(xβ) =
∑
α′⊇β

ϕα′β(xβ)−
∑
β⊇γ′

ϕβγ′ (xγ′ )

− d : A∗0(X) −→ A∗1(X) differential

d(q)αβ(xβ) = qβ(xβ)− Σβα(qα)(xβ)

− ∇p : A0(X) −→ A1(X) gradient w.r.t. to a consistent belief p ∈ Γ(X)

∇p(f)αβ(xβ) = fβ(xβ)− Eβαpα (fα)(xβ)

− D : A0(X) −→ A1(X) effective energy gradient

D(f)αβ(xβ) = fβ(xβ)− Fβα(fα)(xβ)

Field Duality

− natural duality bracket 〈− |− 〉 : A∗n(X)⊗An(X) −→ R

〈 q | f 〉 =
∑

α0⊃...⊃αn

〈 qα0...αn | fα0...αn 〉

− covariance metric 〈− |− 〉p : An(X)⊗An(X) −→ R induced by a consistent p ∈ Γ(X)〈
f
∣∣ g 〉

p
=

∑
α0⊃...⊃αn

〈
fα0...αn

∣∣ gα0...αn

〉
pαn

Properties

− Adjunction of d and δ for the natural duality bracket

〈 dq |ϕ 〉 = 〈 q | δϕ 〉

− Adjunction10 of ∇p and δ for the metric induced by p ∈ Γ(X)〈
∇p(f)

∣∣ϕ 〉
p

=
〈
f
∣∣ δϕ〉

p

− Gibbs State gradient operator ∇p = dDH

∇p(f)αβ = D(H + f)αβ − D(H)αβ + o(f) for pα =
1
Zα

e−Hα

8The graded vector space A•(X) of fields is an analog of the space Ω•(R3) of scalar, vector, ... fields on R3, or of
the space C•(K) of chains in a simplicial complex K, except here fields have functional coefficients fα(xα) instead of
scalar coefficients.

9Differential here means that δ : An+1(X) → An(X) and its adjoint d : A∗n(X) → A∗n+1(X) extend to square-null
operators (δ2 = δ ◦ δ = 0 and d2 = 0) on the whole complexes A•(X) and A∗•(X). They play the role of discrete spatial
differentiation operators, and the terminology chosen to reflect their analogs on the space of smooth fields Ω•(R3). See
equations (2.20.n) and (2.21.n) for the actions of δ and d on higher degrees.

10These two properties are discrete analogs of the integration by parts formula
∫
R3

~grad(f) · ~ϕ = −
∫
R3 f div(~ϕ).
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Combinatorial Operators

− ζ̃Ω : A0(X) −→ AΩ total energy

ζ̃(h)Ω(xΩ) =
∑
α

hα(xα) = HΩ(xΩ)

− ζ : A0(X) −→ A0(X) zeta transform11

ζ(h)α(xα) =
∑
α⊇β′

hβ′ (xβ′ ) = Hα(xα)

− µ : A0(X) −→ A0(X) Möbius transform12 : µ = ζ−1

µ(H)α(xα) =
∑
α⊇β′

µαβ′ Hβ′ (xβ′ ) = hα(xα)

− ζ : An(X) −→ An(X) extended zeta transform

ζ(ϕ)α0...αn =
∑

α0⊇β0 6⊆α1

· · ·
∑

αn⊇βn

ϕβ0...βn = Φα0...αn

− µ : An(X) −→ An(X) extended Möbius transform: µ = ζ−1

µ(Φ)α0...αn =
∑

αn⊇βn

· · ·
∑

α0⊇β0 6⊆β1

µα0β0 . . . µαnβn Φβ0(β0∩β1)...(β0∩···∩βn) = ϕα0...αn

Properties

− Möbius numbers13 cα ∈ Z and total energy HΩ of a potential h = µ ·H ∈ A0(X)

HΩ =
∑
α

hα =
∑
α

cα Hα = ζ̃(h)Ω

− Gauss formula14 for a current ϕ ∈ A1(X)

ζ(δϕ)α =
∑
α⊇β′

δ(ϕ)β′ =
∑
α′ 6⊆α

∑
α⊇β′

ϕα′β′ = ζ̃(ϕ)Ωα

− Gauss formula15 for ϕ = µ · Φ ∈ A1(X)

ζ
(
δ(µ · Φ)

)
α

=
∑
α′ 6⊆α

cα′ Φα′(α∩α′) = ζ̃(µ · Φ)Ωα

Main Theorem16

− Homology and total energy: for every u, h ∈ A0(X)

∃ϕ ∈ A1(X) s.t. u = h+ δϕ ⇔
∑
α

hα =
∑
α

uα

11« ζ(h)α =
∫

Λα h » is analogous to a discrete integral of the potential h on the cone Λα = {β ⊆ α} below α.
12The coefficients µαβ ∈ Z are computed inductively by µαα = 1 and µαγ = 1−

∑
α⊃β′⊃γ µαβ′ for every Ω ⊇ α ⊇ γ.

13The coefficients cα ∈ Z are computed inductively cβ = 1−
∑

α′⊃β cα′ =
∑

α′⊃β µα′β .
14« ζ(δϕ)α =

∫
Λα δϕ =

∫
dΛα ϕ » is analogous to a discrete flux integral of the current ϕ bound into Λα.

15Möbius inversion on the effective energy gradient ϕ = µ · D(U) before updating effective energies by U̇ = ζ(δϕ) is
one of our proposed regularisations of message-passing schemes (chapter 5).

16This result will rely on the fundamental yet not so widely known interaction decomposition theorem 2.8 [10, 17]
which consistently decomposes each Aα as a direct sum of interaction subspaces ⊕βZβ for β ⊆ α.
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Energy and Information Functionals

Local Functionals

− Fα : Aα
C∞−→ R local free energy

Fα(Hα) = − ln
∑

xα∈Eα

e−Hα(xα)

− Sα : ∆α
C∞−→ R local entropy

Sα(pα) = − ln
∑

xα∈Eα

pα(xα) ln pα(xα)

Legendre Duality

− Sα is the Legendre transform of Fα, and reciprocally

Fα(Hα) = min
pα∈∆α

[
〈 pα |Hα 〉 − Sα(pα)

]
− dFα : Aα

C∞−→ ∆α maps hamiltonians to their Gibbs probability densities

dFα(Hα) = 〈 pα | − 〉 = Epα [−] where pα =
1
Zα

e−Hα

− dSα : ∆α
C∞−→ Aα/R maps probability densities to their hamiltonians, defined up to additive constants

dSα(pα) = 〈− |Hα 〉 where Hα ' − ln pα mod R

Global Functionals

− UΩ : ∆Ω ×AΩ
C∞−→ R internal energy

UΩ(pΩ, HΩ) = 〈 pΩ |HΩ 〉 = EpΩ [HΩ]

− FΩ : ∆Ω ×AΩ
C∞−→ R variational free energy

FΩ(pΩ, HΩ) = 〈 pΩ |HΩ 〉 − SΩ(pΩ)

Bethe-Kikuchi Approximation

− F̌ : ∆0(X)×A0(X) C
∞
−→ R Bethe free energy: constrained to consistent beliefs p ∈ Γ(X)

F̌(p,H) =
∑
α∈X

cα

[
〈 pα |Hα 〉 − Sα(pα)

]
Main Theorems

− Homological invariance of F̌(p, − ): for every consistent belief p ∈ Γ(X) and effective hamiltonian H ∈ A0(X)

F̌
(
p,H + ζ(δϕ)

)
= F̌(p,H)

− p ∈ Γ(X) is critical for F̌(−, H)|Γ(X) iff there exists a current ϕ ∈ A1(X) s.t. for all α ∈ X

− ln pα ' Hα + ζ(δϕ)α mod R
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Message-Passing as Diffusion

Heat Analogy

Energy density = time-dependent scalar field u : R→ Ω0(R3) = C∞(R3)

Heat exchange = time-dependent vector field ~ϕ : R→ Ω1(R3) = C∞(R3,R3)

− energy conservation: u̇ = div(~ϕ)

− heat flux: ~ϕ = −λ ~grad(T )

Characteristic relation u = c T (condensed matter) or non-relationship between temperature and energy.

Message-Passing on Graphs17

The algorithm takes the form u̇ = −
(
δ ◦ D ◦ ζ

)
(u) on potentials, i.e.

u̇ = δϕ where ϕ = −D(U)
U = ζ · u

− Energy conservation u̇ = δϕ dictates the update of effective potentials u ∈ A0(X)

d

dt
uij(xi, xj) = −ϕij→j(xj)− ϕij→i(xi) and

d

dt
ui(xi) =

∑
j′∼i

ϕij′→i(xi)

− Heat flux ϕ = −D(U) ∈ A1(X) measures the lack of consistency of effective hamiltonians

ϕij→j(xj) = −Uj(xj)− ln
∑
xi∈Ei

e−Ui(xi,xj)

− Effective hamiltonians U = ζ(u) ∈ A0(X) are given by

Uij(xi, xj) = uij(xi, xj) + ui(xi) + uj(xj) and Ui(xi) = ui(xi)

− Beliefs qij = 1
Zij

e−Uij and qi = 1
Zi

e−Ui should be normalised at each iteration on graphs with loops18

Message-Passing on Hypergraphs19

Möbius inversion on the heat flux reads u̇ = −
(
δ ◦ µ ◦ D ◦ ζ

)
(u) on potentials, i.e.

u̇ = δϕ where ϕ = µ · Φ
Φ = −D(U)
U = ζ · u

− Effective hamiltonians U = ζ ·u ∈ A0(X) follow the energy conservation principle: U̇ = δζ(Φ) where δζ = ζ δ ζ−1

d

dt
Uα(xα) =

∑
α′ 6⊆α

cα′ Φα′(α∩α′)(xα∩α′ )

− Extensive heat flux Φ = ζ · ϕ ∈ A1(X) flows against the effective energy gradient: Φ = −D(U)

Φαβ(xβ) = −Uβ(xβ)− ln
∑

x′∈Eαrβ

e−Uα(xβ ,x′)

− Beliefs qα = 1
Zα

do not need to be normalised20

Correspondence Theorem

Effective hamiltonians U = H + ζ · δϕ ∈ A0(X) are stationary under diffusion

⇔ Beliefs q = 1
Z

e−U ∈ Γ(X) are consistent and critical for the Bethe free energy F̌(−, H)|Γ(X)

17On acyclic graphs (trees) the algorithm converges in finite time, as already stated in Pearl’s seminal paper [24].
Substitute u(t+1) − u(t) for du

dt
and translate to beliefs to recover the usual belief propagation algorithm.

18With loops, the dynamic on potentials is best understood up to additive constants.
19On retractable hypergraphs X ⊆ P(Ω), we show the algorithm to converge in finite time (chapter 6). Note that

Möbius inversion of the heat flux only affects additive constants when X is a graph, hence the proposed regularisation
only modifies the generalised belief propagation (GBP) algorithm of Yedidia et al. [34]

20When ∅ ∈ X, Möbius inversion of fluxes Φα∅ ∈ R already takes care of regularising normalisation factors.
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Crystals, Codes and Networks

The following 3 pages give a brief overview of some applications that motivated this thesis. They involve a rather
wide spectrum of communities, including statistical physics, artificial intelligence and information theory. Although an
extensive coverage of applications is far out of our scope, the book Information, Physics and Computation by Mézard
and Montanari [23] is an excellent reference for all three subjects.

Crystals and Spin Glasses

Figure 2: (a) Ising model on the square lattice Zn (b) Spin glasses as in the Sherrington-
Kirkpatrick model have random magnetic couplings and release the Zn symmetry assumption.

A set of atoms Ω carries a magnetic dipole xi ∈ {±1} for all i ∈ Ω.

A set of pairs in Ω× Ω relates neighbours i ∼ j whose interactions contribute to the total energy of the system.

− Local magnetic field21 = bias bi ∈ R
hi(xi) = −bi xi

− Local magnetic coupling22 = weight wij ∈ R

hij(xi, xj) = −wij xixj

− Total hamiltonian H : {±1}Ω −→ R

H(x) =
∑
i∈Ω

hi(xi) +
∑
i∼j

hij(xi, xj)

− Gibbs state pθ : {±1}Ω −→ R describes statistical equilibrium at inverse temperature23 θ = 1
kBT

pθ(x) =
e−θH(x)∑
x′

e−θH(x′)

High temperature limit: if θ → 0 then pθ tends to the uniform measure on {±1}Ω.

Low temperature limit: if θ → +∞ then pθ tends to a barycenter of Dirac measures on the minima24 of H.

21The effect of hi(xi) = ±bi is to bring the dipole xi aligned with the field bi ∈ R, with ground energy −bi.
22The effect of hij(xi, xj) = ±wij is to bring dipole xj aligned with xi when wij > 0, and opposed with xi otherwise.
23We denote inverse temperature by θ instead of the usual β = 1/kBT to avoid future confusion with our notation

for subsets α, β, γ, . . . ⊆ Ω. Note that θ will generally be considered set to θ = 1, the effect of temperature being viewed
through dilations on the hamiltonian H ∈ R{±1}Ω .

24In the ferromagnetic case i.e. wij = 1 for all i ∼ j, there are two ground-energy states x = (+1, . . . ,+1) and
x = (−1, . . . ,−1) to which the system crystallises below the critical Curie temperature (spontaneous magnetisation).
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Boltzmann Machines and Neural Networks

Figure 3: Fully-connected (a), restricted (b) and deep (c) Boltzmann machines.

A restricted Boltzmann machine (RBM) consists of two neuron25 layers x1, . . . , xN ∈ {±1} and y1, . . . , yP ∈ {±1}.

The network is trained to generate configurations on its visible layer x, interacting with the hidden layer y.

Biases ai, bj ∈ R and couplings wij ∈ R are learned from observed samples x̄1, . . . , x̄n ∈ {±1}N on the visible layer.

− Probability of a configuration (x, y) ∈ {±1}N+P modeled by

p(x, y) =
1
Z

e−H(x,y) with H(x, y) = −
N∑
i=1

aixi −
P∑
j=1

bjyj −
N∑
i=1

P∑
j=1

wij xiyj

− Maximise the expected log-likelihood26 of a training sample x̄1, . . . , x̄n

Ex̄[− ln p(x̄)] = −
1
n

n∑
s=1

ln
∑

y∈{±1}P

e−H(x̄s,y) + ln
∑

x∈{±1}N

∑
y∈{±1}P

e−H(x,y)

− Estimate27 the loss-function gradient along a local variation28 h(x, y) = h(xi, yj) of the total energy H(x, y)

∂Ex̄[− ln p(x̄)]
∂h

= Ex̄
[
Ep
[
h(x̄i, yj)

∣∣ x̄ ]] − Ep
[
h(xi, yj)

]
=

1
n

n∑
s=1

∑
yj∈{±1}

p(yj |x̄s) h(x̄i, yj) +
∑

x∈{±1}

∑
y∈{±1}

p(xi, yj) h(xi, yj)

Markov properties: conditional independence of x1, . . . , xn given y and reciprocally29

p(x|y) =
N∏
i=1

p(xi|y) =
N∏
i=1

σ

(
aixi −

∑
j

wijxiyj

)

Gibbs sampling30: start from a random configuration y(0) ∈ {±1}
... draw x(t+1) ∈ {±1}N from p(x | y(t))
... draw y(t+1) ∈ {±1}P from p(y |x(t+1))
average over time t to get an estimate of p(x, y) and its marginals

25−1 describes a steady neuron, +1 a neuron firing at maximal rate, and convex combinations i.e. probability densities
on {±1} then correspond to intermediate firing rates.

26The negative log-likelihood of x will be seen as the difference of an effective energy term F[H|x] = − ln
∑

y
e−H(x,y)

and a free energy term F[H] = − lnZ = − ln
∑

x,y
e−H(x,y). See next pages and chapter 4, proposition 4.14.

27The first term is exactly computable using the Markov properties of the network, however the second term requires
to estimate marginals either by Hinton’s contrastive divergence algorithm (CD) or by belief propagation (BP).

28The potential h varies with model parameters, e.g. h(x, y) = −∆wij xiyj
29 y1, . . . , yn are conditionally independent given x. Here σ denotes the logistic function σ(u) = 1

1+e−2u = 1
Z

e−u.
30Gibbs sampling is a type of Markov-chain Monte Carlo, on which the contrastive divergence algorithm relies. Belief

propagation does not resort to Monte Carlo methods.
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Low Density Parity-Check Codes31

Figure 4: Parity-check codes consist of two sequences (xi) ∈ {0, 1}N of signal bits (bottom)
and (yj) ∈ {0, 1}P of validation bits (top) computing the sum mod 2 of a subset of signal bits.

A compressed message is encoded as a binary sequence (xi) ∈ {0, 1}N followed by a parity-check sequence (yj) ∈ {0, 1}P .

Decoding consists in restoring parity-check consistency to rectify the errors induced by a noisy transmission channel.

− Beliefs qi(xi) and qj(yj) initially depend on the received values32 x̄i and ȳj e.g.

qi(xi) =
1
Zi

e−hi(xi) with hi(xi) = θ · |xi − x̄i|

− Local potentials hαj for every validation bit j ∈ {1, . . . , P} connected to a subset αj ⊆ {1, . . . , N} of signal bits

hαj (xi1 , . . . , xin , yj) = λ ·
[(
yj −

∑
i∈αj

xi

)
% 2
]

− Local beliefs qαj favorise parity-check consistency33 and agreement with received values

qαj (xi1 , . . . , xin , yj) =
1
Zαj

e−Hαj (xi1 ,...,xin ,yj) with Hαj = hαj + hj +
∑
i∈αj

hi

Message-Passing: initialise beliefs according to signal received
... compute a message mαj→j for all αj and messages mαj→ip for all ip ∈ αj

mαj→j(yj) =
1

qj(yj)

∑
x′∈{0,1}αj

qαj (x′i1 , . . . , x
′
in
, yj)

mαj→ip (xip ) =
1

qip (xip )

∑
x′∈{0,1}αjrip

∑
y′
j
∈{0,1}

qαj (x′i1 , . . . , xip , . . . , x
′
in
, yj)

... update beliefs34 according to incoming messages and normalise

qj(yj) ← qj(yj)mαj→j(yj)

qi(xi) ← qi(xi)
∏
αj3i

mαj→i(xi)

qαj (xi1 , . . . , xin , yp) ← qαj (xi1 , . . . , xin )
∏
ip∈αj

∏
αk3ip

mαk→ip (xip )

loop until computed messages are close to 1 ⇔ belief consistency is reached

31LDPCs were introduced in Gallager’s 1960 thesis [8] along with the electronic decoding apparatus, equivalent to
the later called belief propagation « algorithm ». The sparse parity-check matrix and the parallelised decoding scheme
reach performance close to the Shannon capacity of the channel, hence the revived interest shown by 5G networks.

32The parameter θ may be tuned to the transmission channel noise/signal ratio, so that 1
1+eθ = P(xi = 0 | x̄i = 1).

33Parity-check consistency is usually enforced as a hard constraint i.e. in the limit λ → +∞, where inconsistent
configurations have zero-probability, which amounts to assume a fail-proof encoding. In any case, consider λ >> θ.

34The dynamic variable is usually considered to be the set of messages: we show that stationarity of beliefs implies
stationarity of messages (theorem 5.17) so that considering the dynamic on beliefs instead is equivalent from the point
of view of message-passing equilibria.
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Index of Notations

Functors:

− X ⊆ P(Ω) base hypergraph
− (E, π) microstates, §2.1.1
− (A, j) observables, §2.2.2
− (A∗,Σ) measures, §2.2.3
− (∆,Σ) probability densities, §2.2.4

Spaces:

− A•(X) complex of local observables, def. 2.6
− A∗•(X) complex of local measures, –
− ∆•(X) convex subspace of local probabilities, –
− Γ(X) convex subspace of consistent local probabilities, def. 2.7
− C(X) manifold of consistent local hamiltonians, def. 5.5
− Z(X) manifold consistent local potentials, def. 5.9

Differential Operators:

− δ boundary of A•(X), §2.2.2
− d differential of A∗•(X), –
− D effective energy gradient, §5.2.1
− ∇ = D∗ linearised effective energy gradient –

Combinatorial Operators:

− ζ zeta transform, sections 3.2 and 3.3
− µ = ζ−1 Möbius transform, §3.2.1 and 3.3.3

Diffusion Operators:

− Φ = −D ◦ ζ standard diffusion flux, §5.2.2
− T = δΦ standard diffusion vector field, –
− φ = −µ ◦ D ◦ ζ canonical diffusion flux, §5.3.2
− τ = δφ canonical diffusion vector field, –

Fields:

− h, u ∈ A0(X) interaction potentials, h for reference and u for evolution
− H,U ∈ A0(X) local hamiltonians, H = ζ · h and U = ζ · u
− ϕ ∈ A1(X) energy flux
− q ∈ ∆0(X) local beliefs, qα = [e−Uα ]

− p ∈ Γ(X) Gibbs state marginals pα = ΣαΩ
(
pΩ
)

Information Functionals:

− Fα free energy, §4.1.1
− Fβα effective energy, §4.1.2
− S Shannon entropy, §4.2.1
− F variational free energy, §4.3.2
− F̌ Bethe free energy, §4.3.3
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Chapter 1

Homological Algebra

This chapter consists of a short yet self-contained introduction to some of the most remarkable
concepts of XXth mathematics, which happened to take a definite form simultaneously and for the
needs of one another: homology and categories. It still seems quite rare that they belong to a common
language with the physicist or the computer scientist, and we hope this chapter provides with more
than the necessary material1. For the more informed reader, this chapter’s purpose is to relate our
construction to the general theory of simplicial groups.

Categories may be thought of as collections of points and arrows, which describe mathematical
objects and their relations, while functors consistently transform categories into other categories. Sec-
tion 1 reviews these elementary definitions and focuses on providing concrete examples such as the
categories of groups, vector spaces, topological spaces, programmable types, etc.

The practical use of category theory language is specially remarkable in the characterisation of
particular objects by universal properties. Section 2 focuses on the categorical concept of limit, which
unifies many constructions such as union and product of sets, sums of vector spaces, inductive and
projective limits, etc. It should familiarise the reader with commutative diagrams and will help describe
homology groups in chapter 2.

Homology provides a general procedure to extract algebraic invariants from topological spaces,
while cohomology may be thought of as an abstraction of differential calculus. Section 3 provides with
the basic definition of homology groups, which from a purely algebraic point of view, occur in the
study of a square-null operator d such that d2 = 0. Geometry however best illustrates the purpose of
homology, which unifies various integration by parts formulas under the Stokes theorem2. The Gauss
formula is a particular case of the latter, and its discrete analog 2.3 encountered in chapter 2 will play
a fundamental role in understanding the geometric structure of message-passing algorithms.

1Apart from a few proofs, this work should demand little more than a good understanding of the notion of functor,
and formulas defining the boundary operator and the differential could talk for themselves.

2Homological thinking already emerged with Maxwell and Faraday, in formulating physical principles for electro-
magnetism. They involve (i) the geometric operator ∂ mapping a subspace to its boundary, which has empty boundary,
and (ii) the differential d acting on fields as gradient, curl, divergence, while d2 vanishes as div ◦ curl = curl ◦ grad = 0.
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1.1 Categories and Functors

1.1.1 Categories

Categories provide with a convenient abstraction of most mathematical constructions and theories.
They were introduced by Eilenberg and MacLane [15] to build homological algebra on a rigorous and
flexible ground, they have since proven useful in many diverse applications in mathematics, informatics
and physics.

Definition 1.1. A category C is a class of objects A,B,C, . . . denoted by Ob(C) together with:

− a set of arrows Hom(A,B) for every A,B in Ob(C),
− an identity arrow 1A ∈ Hom(A,A) for every A in Ob(C),
− a composite arrow gf ∈ Hom(A,C) for every f ∈ Hom(A,B) and g ∈ Hom(B,C)

satisfying the following axioms:

(i) Identity: for every f : A→ B
f = f · 1A = 1B · f (1.1)

(ii) Associativity: for every f : A→ B, g : B → C and h : C → D

h(gf) = (hg)f (1.2)

The first example of a category is Set, the category whose objects are sets and arrows are functions.
When each object of C may be viewed as a set and each arrow f ∈ Hom(A,B) induces a function
f ∈ BA of the underlying sets, the category C is called concrete, Equivalently, a concrete category C is
a subcategory of Set. Although the following definitions make sense in any category, they respectively
correspond to bijections, injections, and surjections in Set as in most examples of concrete categories.

Definition 1.2. Let C be a category and f : A→ B a morphism.

− f is an isomorphism if there exists g : B → A such that gf = 1A and fg = 1B.
− f is a monomorphism if for all X and u, u′ : X → A, fu = fu′ implies u = u′.
− f is an epimorphism if for all Y and v, v′ : B → Y , vf = v′f implies v = v′.

A category may have terminal objects, satisfying one of the conditions of the following definition.
These very special objects are also called universal as a terminal object of a given kind, when it exists,
is always defined up to isomorphism. Universal objects are related to the existence of certain limits,
and describe many fundamental constructions in algebra and geometry3.

Definition 1.3. Let C be a category.

− an object I is initial in C if there is a unique arrow I → A for every object A in C,
− an object F is final in C if there is a unique arrow A→ F for every object A in C,
− an object O is null in C if it is both final and initial.

Proposition 1.4. If T and T ′ are terminal objects of the same kind, then T is isomorphic to T ′.

Proof. When T is a terminal object, the axioms imply that 1T is the unique arrow of Hom(T, T ). If T ′
is terminal of the same kind, the arrows T → T ′ and T ′ → T must then compose as 1T and 1T ′ .

3Such constructions are called universal, a few of which being the object of section 1.2. The construction of the
tensor algebra (T (V ),⊗) from a vector space V is a classical example that is not exposed here.
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Definition 1.5. For any category C, its dual or opposite category Cop has the same objects as C
and, for every arrow f : A→ B in C, a reversed arrow fop : B → A in Cop.

In the following fundamental examples, we give an initial and a terminal object when they exist. In
many interesting examples, the set of morphisms between two objects is also an object of the category.
This is not true in general and we precise when it is the case4.

Examples of Categories:

1. A partial order (X,≥) is a category with a unique arrow x→ y whenever x ≥ y.
The identity axiom x ≥ x expresses the reflexivity of the order relation, while the transitivity
asking that if x ≥ y and y ≥ z, then x ≥ z, is given by the existence of compositions.
Initial and final elements correspond to maximal and minimal elements respectively.

2. The category Set whose objects are sets and arrows are functions.
The set of arrows Hom(A,B) is itself a set, denoted BA.
The empty set ∅ is initial and the point • = {∅} is final in Set.

3. The category AlgK of unital algebras over a field K whose arrows are algebra morphisms.
The field K is both initial and final in AlgK, it is a null object.

4. The category Top whose objects are topological spaces and arrows are continuous functions.
The point • is final in Top.

5. The category Types whose objects are variable types and arrows are programs5.
The set of arrows Hom(a, b) represents the programs with input of type a and output of type b.
It is itself a type, denoted by (a→ b).
The empty or bottom type ⊥ is initial, while the unit or top type > is final. An arrow of type
a→⊥ represents a program which does not terminate.

6. For every object X of a category C, the category CX above X has arrows f : A→ X as objects.
A morphism ϕ : f → g in CX between f : A → X and g : B → X is an arrow ϕ : A → B in C
such that the following diagram commutes:

A B

X

ϕ

f
g (1.3)

There is a similar category CX below X defined by reversing arrows, which amounts to reading
the above definition in Cop.

4The existence of a hom-object is a defining property of cartesian categories.
5This example is motivated by functional programming, although types also aim to provide with a constructivist

and rigorous ground for mathematical logic. See for instance the Curry-Howard "proofs as programs" correspondence
and Martin-Löf’s theory of types.

19



1.1.2 Functors

Just as morphisms describe relations between objects in a category, functors describe relations
between categories by bringing every object to an object and every arrow to an arrow.

Definition 1.6. A covariant functor T from two categories C and C′ is defined by:

− An object T (A) of C′ for every object A of C
− An arrow T (f) : T (A)→ T (B) in C′ for every arrow f : A→ B in C.

satisfying the following axioms:

(i) T (1A) = 1T (A),
(ii) T (fg) = T (f) · T (g)

Examples of Functors:

1. When (X,≥) and (Y,≥) are partially ordered sets, a functor from X to Y is an order-preserving
map from X to Y .
This defines the category Ord of ordered sets with order-preserving map as morphisms.

2. For every object X of a category C, there are canonical functors Hom(−, X) and Hom(X,−)
from C to Set.
The pull-back of f : A→ B is the map f∗ : Hom(B,X)→ Hom(A,X) defined by f∗(u) = u ◦ f
for every u : B → X. Hom(−, X) is a contravariant functor.
The push-out of g : C → D is the map g∗ : Hom(X,C) → Hom(X,D) defined by g∗(v) = g ◦ v
for every u : X → C. Hom(X,−) is a covariant functor.

3. A contravariant functor from Top to Alg is defined by associating to each topological space Ω
the algebra C(Ω) of real continuous functions on Ω.
For every arrow ϕ : Ω→ Ω′ in Top, its pullback ϕ∗ : C(Ω′)→ C(Ω) defined by ϕ∗(f) = f ◦ ϕ is
an algebra morphism.
This is a particular case of the previous example, as C(Ω) = Hom(Ω,R) in Top.

4. The endofunctor list of Types associates to each type a the type [a] of lists whose elements
are of type a.
Any function f : a→ b induces a function map(f) : [a]→ [b] returning the list of images under f
of the input list’s elements.

map(f) : [x, . . . xs] 7→ [f(x), . . . map(f)(xs)]
: [ ] 7→ [ ]

(1.4)

5. When C is a concrete category, there is a canonical forgetful functor from C to Set.
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1.1.3 Natural Transformations

Relations between functors are described by natural transformations, also called functor morphisms,
as they allow to view functors as objects of a category.

Definition 1.7. Let T, T ′ be two functors from C to C′. A natural transformation Φ from T to T ′ is
a collection of morphisms Φ(A) : T (A)→ T (A′) in C′ for all A in C, such that the diagram:

T (A) T ′(A)

T (B) T ′(B)

Φ(A)

T (f) T ′(f)
Φ(B)

(1.5)

is commutative for all f : A→ B in C.

Given two categories C and C′, the functor category [C,C′] has functors T : C → C′ as objects
and natural transformations Φ : T → T ′ as morphisms, where:
− The identity 1T : T → T is defined by 1T (A) = 1T (A) for all object A of C,
− The composition of Φ : T → T ′ and Ψ : T ′ → T ′′ is defined by (Ψ ◦ Φ)(A) = Ψ(A) ◦ Φ(A).
Examples: [[ Hom(−, X) and Yoneda ]] [[ adjunction example ]]

1.2 Limits and Colimits

Universal properties allow for an abstract definition of limits, unifying some simple constructions
such as sums and products of sets with more elaborate ones, such as inductive and projective limits.
Lecture notes from H. Cartan [5] were a great resource on the subject. The book by Dwyer and Spalinski
[6] should however prove more useful for the reader interested in modern categorical constructions.

1.2.1 Definition

A diagram of shape D in a category C consists of a functor C : D→ C where D is a small6 category
describing the diagram shape. It is a collection C(f) : Cα → Cβ of arrows in C for all f : α→ β in D.

A cone over C in C is an object S of C and a collection of morphisms ϕα : S → Cα for all α ∈ D
such that the following diagram in C commutes for every f : α→ β in D:

S

Cα Cβ

ϕα ϕβ

C(f)
(1.6)

In other words, (S, ϕ) extends the functor C to the category D0 preceding D with an initial element.
A morphism between two cones (S, ϕ) and (S′, ϕ′) over C is a morphism ψ : S → S′ in C such that
the following diagram commutes for all α ∈ D:

S S′

Cα

ψ

ϕα
ϕ′α (1.7)

6A category is said small when the class of its objects actually forms a set.
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A limit of a diagram C : D → C is a final element (L, λ) in the category of cones over C. When a
limit L exists, it is defined up to isomorphisms in C by the universal property requiring that for every
cone (S, ϕ) over C there be a unique morphism ψ : S → L factorising S through L.

S

L

Cα Cβ

ψ
ϕα ϕβ

λα λβ

C(f)

(1.8)

Definition 1.8. A category C is called complete when every small diagram C : D → C has a limit.
When it exists, we denote by limD C the limit of C defined up to isomorphism.

A colimit of a diagram C : D → C, is reciprocally defined by reversing arrows. It is an initial
element in the category of cones under C, made of extensions of C to the category D1 appending a
final element to D. When it exists, the universal property satisfied by a colimit L′ of C is represented
by the diagram:

Cα Cβ

L′

S′

C(f)

λ′α

ϕ′α

λ′β

ϕ′β
ψ′

(1.9)

Definition 1.9. A category C is called cocomplete when every small diagram C : D → C has a
colimit. When it exists, we denote by colimD C the colimit of C defined up to isomorphism.

We give a few examples of limits below, although the following paragraphs will illustrate much
better the universality of limits.

Examples:

1. When D is the empty category, limits and colimits of the empty diagram in C are initial and
final objects of C respectively.

2. Any object A of a category C defines a diagram, whose shape D is the category with only one
object and its identity map. The limit and colimit are both represented by 1A : A→ A.

3. Let u ∈ RN denote a sequence of real numbers. The induced set map defines a functor between the
partial orders (P(N),⊆) and (P(R),⊆) associating to a subset S ⊆ N its direct image u(S) ⊆ R.
Consider now its restriction ũ to subsets of the form Sn = {n, n+ 1, . . . } for n ∈ N. The limit of
ũ is the largest subset L ⊆ R such that L ⊆ u(Sn) for all n. It consists of all the accumulation
points of u.

4. in some abelian category e.g. Vect [[Kernel and Image]].
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1.2.2 Sums and Products

Any two objects A,A′ in a category C define a diagram of shape a category D with two objects
and identities as morphisms. When it exists, a final cone over A and A′ defines their product A× A′,
satisfying the universal property depicted by:

A

X A×A′

A′

π

π′

(1.10)

Their sum or coproduct A tA′ is reciprocally defined as an initial cone under A and A′.

A

A tA′ Y

A′

j

j′

(1.11)

Examples:

1. In Set and Top, the product of A and A′ is their cartesian product A × A′, while their sum is
the disjoint union A tA′.

2. In Grp the product and coproduct of G and G′ coincide as G × G′. In Vect, the product and
the sum of V and V ′ also coincide as V ⊕ V ′. This is a general property of abelian categories.

3. In the category Com of unital commutative algebras, the coproduct of A and A′ is their tensor
product A⊗A′, with canonical injections 1⊗− and −⊗ 1.

1.2.3 Pushouts and Pullbacks

Consider the diagram shape given by D : α→ β ← α′. The limit of this kind of diagrams, when it
exists, defines the pullback or fibered product A×B A′ of A and A′ over B:

A

X A×B A′ B

A′

vπ

π′ v′

(1.12)

The pushout or amalgated sum A tB A′ of A and A′ over B, when it exists, is defined by the dual
universal property:

A

B A tB A′ Y

A′

ju

u′ j′

(1.13)
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Note that the morphisms are implicit in the notations A ×B A′ and A tB A′ although the resulting
objects depends on them.

Examples:

1. In Set as in Top, the fibered product of v : A→ B and v′ : A′ → B is defined by:

A×B A′ = {(x, x′) ∈ A×A′ | v(x) = v′(x′)} (1.14)

while the pushout of u : B → A and u′ : B → A′ is the quotient:

A tB A′ = A tA′ /
(
u(y) ∼ u′(y)

)
y∈B (1.15)

2. In the category of commutative algebras Com, the pushout A⊗BA′ of u : B → A and u′ : B → A′

is the quotient of A⊗A′ by the equivalence relation generated by the action of all b ∈ B:(
a · u(b)⊗ a′

)
∼
(
a⊗ u′(b) · a′

)
(1.16)
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1.2.4 Sheaves and Cosheaves

Definition 1.10. A presheaf over a topological space (Ω, TΩ) is a functor F : TΩ → Set, associating:

− to each open subset U ⊆ Ω a set F (U) of sections over U ,
− to each ordered pair V ⊆ U a restriction map ρV U : F (U)→ F (V ).

A presheaf is thus contravariant7 from (TΩ,⊆) to Set, and covariant from T opΩ = (TΩ,⊇) to Set.

The fiber of F at x ∈ Ω is defined as the colimit of F over the partial order (Vx,⊇) of neighborhoods
containing x and denoted by Fx:

Fx = colim
Vx

F (1.17)

For all U containing x, the image s(x) of a section s ∈ F (U) under the canonical map F (U) → Fx is
called the germ of s at x.

When UΩ′ is an open covering of Ω′ ⊆ Ω closed under intersection, the limit of F over (UΩ′ ,⊇) is
the set of compatible sections on UΩ′ :

lim
UΩ′

F '
{

(sU ) ∈
∏

U∈UΩ′

F (U)
∣∣∣ ∀U, V ∈ UΩ′ (sU )|U∩V = (sV )|U∩V

}
(1.18)

A presheaf F over Ω is a sheaf when for all such covering UΩ′ of Ω′, the sections of F over Ω′ are in
one-to-one correspondence with the compatible sections on UΩ′ .

Definition 1.11. A sheaf F over Ω is a presheaf such that:

F (Ω′) ' lim
UΩ′

F (1.19)

for every open covering UΩ′ of Ω′ ⊆ Ω closed under intersection.

Morphisms of sheaves are defined as natural transformations of functors, and the category of sheaves
over Ω is naturally defined by inclusion in the functor category [T opΩ ,Set]. When F is a sheaf, it is
customary to denote it by F (Ω) with a slight abuse8 of notations. Note that the sheaf axiom implies
that the diagram:

F (U ∪ V ) F (V )

F (U) F (U ∩ V )

(1.20)

is a pullback square in Set, for all open U, V ⊆ Ω. When limits exist, sheaves may be defined in any
category, and one is often mostly interested with sheaves of abelian groups, rings, modules, etc. fibered
products and limits coinciding with those coming from sets.

There is a dual notion of cosheaf, although seemingly less common.

Definition 1.12. A pre-cosheaf over a topological space (Ω, TΩ) in a category with colimits C is a
covariant functor G : TΩ → C associating:

− to each open subset U ⊆ Ω an object G(U) in C
− to each ordered pair V ⊆ U a morphism jUV : G(V )→ G(U) in C

7As a subcategory of Set, this is the right choice of arrows on TΩ.
8F (U) may not be the image of F (Ω) under ρUΩ.
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Definition 1.13. A cosheaf over Ω is a pre-cosheaf such that:

G(Ω′) ' colim
UΩ′

G (1.21)

for every open covering UΩ′ of Ω′ ⊆ Ω closed under intersection.

The category of C-valued cosheaves on Ω is similarly defined as a subcategory of [TΩ,C]. The
cosheaf axiom implies that G(∅) is initial in C, and that the diagram:

G(U ∩ V ) G(V )

G(U) G(U ∪ V )

(1.22)

is a pushout square in C for all open U, V ⊆ Ω.

Examples:

1. The space C(Ω) of real continuous functions over a topological space Ω defines the fundamental
example of a sheaf of algebras, with obvious restrictions.

2. Suppose given a numerable set Ω with finite sets Ei for all i ∈ Ω, and let Eα =
∏
i∈αEi for all

α ⊆ Ω Then EΩ defines a sheaf of sets over the discrete topological space Ω.

3. When f ∈ C(Ω,Ω′) is a continuous map of topological spaces, the map U ′ 7→ f−1(U ′) is a cosheaf
of sets over Ω′.

4. Given EΩ as above, let Aα = REα denote the algebra of real functions on Eα, for all α ⊆ Ω.
Then for all β, β′ ⊆ Ω we have Aβ∪β′ = Aβ ⊗Aβ∩β′ Aβ′ and A is a cosheaf of algebras over Ω.

1.3 Differential Structures

Simplices generalise the usual figures of point, segment, triangle, tetrahedron, etc. They correspond
to elementary objects in topology and geometry, as any n-dimensional manifold may be triangulated
by simplices of dimension n. They also carry the fundamental combinatorial properties of differential
calculus, which will motivate the much more algebraic definition of simplicial objects.

1.3.1 Simplicial Complexes

Given an affine space E and n + 1 affinely independent points P0, . . . , Pn, the convex polyhedron
generated by those points is called the n-simplex of vertices Pi:

S =
{
M ∈ E

∣∣∣ −−→OM =
n∑
i=0

λi
−−→
OP i for λj ≥ 0 and

∑
i

λi = 1
}

(1.23)

Note that for any choice of origin O ∈ E, the barycentric coordinates λi of M are uniquely determined
independently of O. Barycentric coordinates identify points of a simplex with probability measures on
its set of vertices.
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Definition 1.14. The topological n-simplex over the set of n+ 1 vertices Ω is defined by:

|SΩ| =
{
λ : Ω→ R+

∣∣∣ ∑
i∈Ω

λi = 1
}

(1.24)

It is a convex subset of RΩ, and a topological space for the topology induced by RΩ.

Let S denote the simplex of vertices Ω. A q-face S′ of S is defined by a set of q+ 1 vertices Ω′ ⊆ Ω,
such that S′ ⊆ S consists of the barycentric coordinates λ that vanish on Ω − Ω′. The interior of S
for the topology of RΩ consists of all the non-vanishing barycentric coordinates λ > 0, and coincides
with the complement of all the proper faces of S within S.

There is an equivalence Ω 7→ |SΩ| between the categories of finite sets and topological simplices
ordered by inclusion, where P(Ω) is identified with the set of faces of |SΩ|. It is therefore natural to
identify a simplex with its set of vertices. Every f : Ω→ Ω′ induces a continuous map f∗ : |SΩ| → |S′Ω|
defined by:

(f∗λ)j =
∑

i∈Ω | f(i)=j

λi (1.25)

and sending every face of |SΩ| to a face of |SΩ′ |. Simplices hence define a covariant functor Setf → Top,
which could be extended to the larger category of measurable spaces.

Definition 1.15. An abstract simplicial complex (Ω,K) is a finite set of vertices Ω together with a
collection of faces K ⊆ P(Ω) made of finite subsets of Ω, such that for all α ∈ K, every β ⊆ α is also
in K.

The n-skeleton Kn of a simplicial complex K consists of all its n-faces, i.e. faces having exactly
n+ 1 vertices. The abstract simplex SΩ is the trivial simplicial complex (Ω,P(Ω)) having all possible
faces. A simplicial complex (Ω,K) is essentially a reunion of abstract simplices Sα, for α in K.

The topological space |K| associated to a simplicial complex (Ω,K) is obtained by gluing the
simplices of K along their intersecting faces:

|K| = colim
α∈K

|Sα| (1.26)

The inductive limit, taken over the functor α 7→ |Sα|, is essentially a reunion in the ambient topological
simplex |SΩ|.

Definition 1.16. A simplicial morphism f : (Ω,K)→ (Ω′,K ′) is a map of sets f : Ω→ Ω′ such that
for all face α of K, its image f(α) ⊆ Ω′ is a face of K ′.

Simplical complexes form a category KS. A simplicial map f : K → K ′ induces for all α ∈ K a con-
tinuous function fα∗ : |Sα| → |Sf(α)|. These maps extend to a map of topological spaces f∗ : |K| → |K ′|
and topological realisation defines a covariant functor KS→ Top.

The definition of a simplicial complex K with vertices in Ω could be naturally extended when Ω is
numerable and more generally, when Ω is a measurable space.

1.3.2 Simplicial Objects

For every n ∈ N, denote by [n] = {0, . . . , n} the total order with n + 1 elements, and by
(
[n], Sn

)
the abstract n-simplex with ordered vertices.
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Definition 1.17. The simplicial category ∆ is defined by:
− objects: [n] for any n in N,
− morphisms: [m]→ [n] order-preserving map.

Equivalently, ∆ is the subcategory of Ord with objects [n] for n ∈ N.

An ordered n-simplex σ in a simplicial complex (Ω,K) is a simplicial map σ :
(
[n], Sn

)
→ (Ω,K).

The ordered n-simplex σ = (σ0, . . . , σn) is said non-degenerate when σi 6= σj for i 6= j and the
underlying set map is injective.

A simplicial complex (Ω,K) then defines a contravariant functor ~K : ∆op → Set where:
− ~Kn = ~K

(
[n]
)
is the set of ordered n-simplices in K,

− t∗ : ~Kn → ~Km is defined for all t : [m]→ [n] by the pullback σ 7→ σ ◦ t.
Denoting by |σ| = Im(σ) the image of an ordered n-simplex, we have |t∗σ| ⊆ |σ| for all t : [m]→ [n].

A simplicial map f : (Ω,K)→ (Ω′,K ′) induces a natural transformation f∗ : ~K → ~K ′, defined by
the pushforward σ 7→ f ◦ σ. The natural transformation f∗ is a morphism in the category of functors
[∆op,Set] and the assignment (Ω,K) 7→ ~K defines a covariant functor KS → [∆op,Set]. The set of
ordered simplices ~K of a simplicial complex (Ω,K) is the fundamental example of a simplicial set, and
motivates the following more general definition of simplicial objects in an arbitrary category.

Definition 1.18. A simplicial object in a category C is a functor X : ∆op → C.

Simplicial objects in C form a category [∆op,C] with natural transformations as morphisms. Given
a simplicial object X, we denote X

(
[n]
)
by Xn and for t : [m]→ [n] we denote X(t) by t∗ : Xn → Xm.

A category C defines a simplicial set N(C) called its nerve, defined by:

Nn(C) = Hom([n],C) (1.27)

An ordered n-simplex σ ∈ Nn(C) is a covariant functor σ :
(
[n],≤

)
→ C. Equivalently, it is a

commutative diagram of n+ 1 objects σ0, . . . , σn with arrows σij : σi → σj for all i < j.

Given a simplicial set X : ∆op → Set, the group of chains Z[X] : ∆op → Ab is the simplicial
abelian group freely generated by X, with:

Zn[X] =
⊕
σ∈Xn

Z · eσ (1.28)

and every map t : [m]→ [n] inducing a group morphism t∗ : Zn[X]→ Zm[X] defined by t∗(eσ) = et∗σ.
Chain groups thus define a functor Z[ · ] from simplicial sets to simplicial abelian groups.

For all n ∈ N and 0 ≤ i ≤ n, consider the i-th face map ∂i : [n− 1] → [n] defined as the injection
of [n − 1] whose image misses the i-th vertex in [n]. Note that face maps generate all injective maps
of ∆ and satisfy the following fundamental commutation relations:

∂i ◦ ∂j = ∂j−1 ◦ ∂i for i < j (1.29)

where the sums of indices i+ j and (j − 1) + i have reversed parity.

Every simplicial abelian group G : ∆op → Ab has a canonical boundary operator ∂ : G→ G where
for all degree n, the map ∂ : Gn → Gn−1 is defined by:

∂ =
n∑
i=0

(−1)i (∂i)∗ (1.30)

The commutation relations of face maps imply that ∂2 = ∂ ◦ ∂ = 0.

Let G = Z
[
~K
]
be the group of chains in a simplicial complex K. If σ is an oriented simplex in K,

then ∂σ is the oriented boundary of σ. The fundamental equation ∂2 = 0 reflects the geometric fact
that the boundary of a boundary is empty.
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Definition 1.19. A cosimplicial object in a category C is a functor Y : ∆→ C.

Every cosimplicial abelian group F : ∆ → Ab has a canonical coboundary operator d : F → F ,
defined by the family of maps dn : Fn → Fn+1 with:

dn =
n+1∑
i=0

(−1)i (∂i)∗ (1.31)

The operator d is called the differential of F and satisfies d2 = d ◦ d = 0.

Given a covering U of a topological space Ω, its Čech nerve is the simplicial set:

Ǔn = {σ : [n]→ U | Uσ = σ0 ∩ · · · ∩ σn 6= ∅} (1.32)

For every σ ∈ Ǔn and t : [m] → [n], the associated simplex t∗σ in Ǔm satisfies Im(t∗σ) ⊆ Im(σ) in U
so that the intersection Ut∗σ contains Uσ in Ω. When F is a sheaf of abelian groups over Ω, it defines
a cosimplicial abelian group F̌ (U) : ∆→ Ab where:

F̌n(U) =
⊕
σ∈Ǔn

F (Uσ) (1.33)

For t : [m]→ [n] the map t∗ : F̌m(U)→ F̌n(U) is defined for every f ∈ F̌m(U) by:

(t∗f)σ = (ft∗σ)|Uσ (1.34)

and F̌ (U) is called the group of Čech cochains of F in U .

1.3.3 Homology

Definition 1.20. A differential group (G, ∂) is an abelian group G together with an endomorphism
∂ : G→ G satisfying ∂2 = 0. The morphism ∂ is called the boundary operator of G.

Given a simplicial complex (Ω,K), a fundamental example is given by the group of chains
(
Z
[
~K
]
, ∂
)
.

When (G, ∂) is any differential group, its boundary operator defines the two following subgroups:
− a cycle is an element of Z(G) = Ker(∂),
− a boundary is an element of B(G) = Im(∂),

The rule ∂2 = 0 implies that every boundary is a cycle and B(G) ⊆ Z(G).

Definition 1.21. The homology group of (G, ∂) is the quotient group H(G) = Ker(∂)/ Im(∂).

More generally, x, x′ ∈ G are said homologous when there exists y ∈ G such that x′ = x+ ∂y, we
then write x ∼ x′ and denote by [x] the class of x ∈ G for this equivalence relation. Homology groups
consist of the equivalence classes of cycles.

When (Ω,K) is a simplicial complex, the homology of its group of chains is denoted by H(K;Z).

Definition 1.22. A morphism of differential groups f : (G, ∂) → (G′, ∂′) is a map of abelian groups
f : G→ G′ such that the following diagram is commutative:

G G′

G G′

∂

f

∂′

f

(1.35)

In particular, f sends Z(G) in Z(G′) and B(G) in B(G′).
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Differential groups form a category which we denote by Ab∂ . Given a map of simplicial sets
f : X → X ′, the group morphism f∗ : Z[X] → Z[X ′] commutes with boundary operators and chain
groups define a covariant functor from simplicial sets to Ab∂ .

The following proposition expresses that homology defines a functor H : Ab∂ → Ab, and we get
in particular by left composition with the group of chains, a functor KS → Ab. Functoriality is a
fundamental property of homology, as it was introduced to yield algebraic invariants of topological
spaces, the homology groups of two homeomorphic spaces being isomorphic.

Proposition 1.23. A map of differential groups f : (G, ∂)→ (G′, ∂′) induces a morphism in homology
denoted by [f ] : H(G)→ H(G′).

Proof. A morphism f sends Z(G) to Z(G′) and B(G) to B(G′), hence f : Z(G) → Z(G′)/B(G′)
factors through Z(G)→ Z(G)/B(G).

Definition 1.24. Two maps f, f ′ : (G, ∂)→ (G′, ∂′) are homotopic when there exists a map h : G→ G′

of abelian groups such that f − f ′ = ∂′h+ h∂.

We write f ∼ f ′ when f and f ′ are homotopic. When h is a homotopy from f to f ′, the sum of
the two outer paths coincides with the inner arrow of the following diagram:

G′

G G′

G

∂′

f−f ′

h

∂
h

(1.36)

The homotopy relationship vanishes in homology.

Proposition 1.25. When f, f ′ : (G, ∂) → (G′, ∂′) are homotopic, their induced maps in homology
[f ], [f ′] : H(G)→ H(G′) coincide.

Proof. Let h : G→ G′ denote a homotopy between f and f ′, so that f − f ′ = ∂′h+ h∂.
For all z ∈ Z(G) we have f(z)− f ′(z) = ∂′h(z) ∈ B(G), so that [f(z)] = [f ′(z)] in H(G′).

When (G′, ∂) is a subgroup of (G, ∂) with ∂(G′) ⊆ G′, the boundary operator of G factors to the
quotient onto G/G′ where it induces a boundary ∂′. The relative homology of the pair (G,G′) is
defined as H(G,G′) = H(G/G′) More precisely, let us denote by:

− Z(G,G′) = ∂−1(G′) the set of relative cycles,
− B(G,G′) = G′ + ∂G the set of relative boundaries.

Then H(G,G′) is the quotient of Z(G,G′) by B(G,G′). Noting that ∂ sends Z(G,G′) to Z(G′) and
B(G,G′) to B(G′), there is a canonical morphism in homology [∂] : H(G,G′)→ H(G′).

The injection f : G′ → G and the projection g : G→ G/G′ induce maps in homology:

H(G′) H(G) H(G,G′)[f ] [g] (1.37)
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Proposition 1.26. Given a subgroup (G′, ∂) of (G, ∂), the homology sequence of the pair (G,G′) is
exact:

H(G)

H(G′) H(G,G′)

[g][f ]

[∂]

(1.38)

Proof. Prove that:

− Im([∂]) = Ker([f ]),
− Im([f ]) = Ker([g]),
− Im([g]) = Ker([∂]).

When (G, ∂) and (G′, ∂′) are graded differential groups, the endomorphisms from G to G′ form a
graded differential complex

(
L(G,G′), δ

)
with:

Ln(G,G′) =
∏
k

L(Gk, Gk+n) (1.39)

where the boundary of f ∈ Ln(G,G′) is defined by:

δ(f) = ∂′f − (−1)nf∂ (1.40)

In particuar, a 0-cycle is a morphism of differential groups:

δ(f) = 0 ⇔ ∂′f = f∂ (1.41)

While a 0-boundary is homotopic to zero:

δ(h) = ∂′h+ h∂ (1.42)
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Chapter 2

Statistical Systems

This chapter introduces the theoretical framework for a local approach to statistics, where the term
statistical system may be understood in a double sense. In physics, this commonly refers to a pair
(EΩ, HΩ) where EΩ =

∏
i∈ΩEi is the configuration space of the system and HΩ : EΩ → R is the

hamiltonian or energy function, inducing the statistics as a function of temperature1. Our localisation
procedure on a hypergraph2 X ⊆ P(Ω) also leads to an inductive system (Aα)α∈X of local algebras,
where X should only be chosen coarse enough for the hamiltonian to decompose as a sum of local
interactions potentials (hα)α∈X .

With an emphasis on functoriality, section 1 presents natural constructions for global statistics.
Our approach will focus on the algebra of observables AΩ, formed by functions on the configuration
space EΩ. Probability measures shall then be recovered by duality, as positive and normalised linear
forms on AΩ. This line of thought, common in the field of operator algebras, somehow differs from the
usual probabilistic definitions. It has the considerable advantage of unifying classical statistics with
quantum states.

The complex A•(X) of local observable fields, defined in section 2, will serve to parameterise3

the low-dimensional subspace of AΩ in which the global hamiltonian lies. Its construction essentially
lifts the functor A : Xop → Alg of local observables to a functor on the nerve Ǎ : N(X)op → Alg,
associating to any ordered chain α ⊇ . . . ⊇ γ a copy of Aγ . The simplicial structure of the nerve will
provide A•(X) with a boundary operator δ and whose action A1(X) → A0(X), discrete analog of a
divergence, will describe the dynamic of message-passing algorithms as diffusion equations. Section 2
describes such constructions in their generality4.

Specialising to the setting where each Aα = REα is the algebra of functions on the cartesian
product Eα =

∏
i∈αEi, we compute the homology of A•(X) in section 3. Its acyclicity shall come as

a consequence of the interaction decomposition theorem 2.8. This fundamental result for statistics is
recalled and proved through harmonic analysis, following an original proof by Matǔs, before relating
homology classes of potentials [h] ⊆ A0(X) with global hamiltonians HΩ ∈ AΩ in theorem 2.14.

1The probability of observing a configuration xΩ ∈ EΩ is proportional to the Gibbs density exp(−HΩ(xΩ)/kBT ),
where kB denotes the Boltzmann constant. and T is the equilibrium temperature. Computing the normalisation factor
ZΩ requires to integrate the Gibbs density over the whole configuration space EΩ, which is typically intractable.

2A hypergraph X ⊆ P(Ω) is just a collection of subsets of Ω. A graph is a particular case of hypergraph whose
elements consist of points (vertices) and pairs (edges). The choice of X reflects a splitting of Ω into intersecting chunks:
the coarser the covering, the more precise the local approximations.

3It is actually the differential sequence A0(X)← A1(X)← . . . which will yield a projective resolution of the target
subspace of AΩ, isomorphic to the first homology group A0(X)/δA1(X) of the whole complex A•(X). The global
hamiltonian HΩ ∈ AΩ hence actually defines a homology class [h] = h+ δA1(X) ⊆ A0(X) of interaction potentials (see
theorem 2.14).

4Thanks to investigations by D. Bennequin, we became aware that the construction of a complex by the same lifting
to the nerve (in an abstract setting) was already considered by Grothendieck and Verdier in SGA-4-V [30, 19].
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2.1 Global Statistics

The main purpose of this short and informal section is to introduce the fundamental structures
involved with statistics, along with their notations:

Microstates Observables Measures States

E A = C(E) A∗ ∆ ⊆ A∗

Top Alg Vect Conv

In this picture, most columns are related by functors. In particular, the space ∆ of statistical states
can be functorially defined from a set of microstates E or from a C*-algebra of observables A.

A fundamental component of statistical physics is the Gibbs state map ρ : A→ ∆ defined by:

ρ(H) =
[

e−H
]

(2.1)

where H computes the energy of the system and the bracket denotes normalisation. Both theoretical
and computational problems with the normalisation factor Z(H) =

∫
E

e−H arise when E gets large.
It involves a computation of exponential complexity in the dimension of E, while the study of phase
transitions requires to let the number of atoms go to infinity.

One may thus be lead to give up global observations, and decide that only small enough regions of
the global system may be simultaneously observed. This approach underlies the present work and will
rely heavily on functoriality. What follows could then be thought of as a description of local models
for statistics, which one may join consistently to cover larger systems. This localisation procedure will
still efficiently describe collective phenomena, when performed on a covering which is coarse enough
compared to the range of interactions.

We also hope that the following general discussion may give perspective on possible extensions of
the present work to the continuous and quantum settings. See Meyer [18] for a good reference on
quantum statistics, although our approach was much more inspired by Souriau [27].

2.1.1 Microscopic States

In classical probability theory, one starts with a measurable set E describing all possible outcomes
of an experiment. Consider for instance a physical system of N atoms, labelled by i, j, . . . , each of
which having degrees of freedom in Ei. A configuration of the full system is given by an element of
the cartesian product:

E =
N∏
i=1

Ei (2.2)

A configuration is also called a microscopic state of the system.

In what follows, we shall keep the notation E for configuration spaces. In most applications covered
by this thesis, it is enough to view E as an object of the category Setf of finite sets. However, some
of our constructions may gain generality by considering topological spaces in Top.

Starting with a set of microscopic states is a classical point of view, although somehow artificial
and arbitrary. It is only valid at high enough temperatures as quantum mechanics leads to give up
the fiction of microscopic states. Classical probabilities and quantum states will both be naturally
described by the states of an algebra of observables.
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2.1.2 Observables

In quantum mechanics, one starts with a C*-algebra5 A of observables, describing all possible linear
combinations of measurements that may be performed on a system. Classical statistics also fit very
nicely in this framework, by restricting oneself to commutative algebras of observables.

Given a topological space E describing classical microscopic states, we let:

A = C(E) (2.3)

denote the commutative algebra of continuous and bounded real functions over E, equipped with the
infinite norm ||u||∞ = supx∈E |u(x)|. A classical observable is just a function of the microscopic states.
This assignment defines a contravariant functor C : Topop → Alg, as any continuous map ϕ : E → E′

has a pull-back ϕ∗ : A′ → A defined by: (
ϕ∗u

)
(x′) = u

(
ϕ(x)

)
(2.4)

In most of this work, the algebra of observables A = C(E) will be commutative and given by such a
procedure. We however emphasize that once given the algebra, one may very well forget about the
underlying set.

We will be mostly interested in the finite setting where:

A = RE (2.5)

is a finite dimensional vector space, isomorphic to the multiplicative Lie group G = (R∗+)E of strictly
positive observables under the expontential map, i.e. could be viewed as the abelian Lie algebra of G.
Restricting to finite configuration spaces will leave aside most technical difficulties, greater generality
is only mentioned here for the sake of perspective.

At the quantum level, the prototype of a C*-algebra is given by a Von Neumann algebra:

A ⊆ B(H) (2.6)

of bounded operators over a complex Hilbert space H, with complex adjunction a∗ = āt as involution,
although most constructions can be carried on the algebra most naturally, without any reference to a
particular Hilbert space.

Every C*-algebra A has a positive cone A+ defined by:

a ≥ 0 ⇔ ∃b ∈ A with b∗b = a (2.7)

Any positive element a ≥ 0 is self-adjoint and satisfies a∗ = a; its spectrum is contained in R+. The
above would also describe positive functions of C(E). Positivity will be a fundamental concept when
defining the states of the algebra.

5A C*-algebra is an algebra over C with (i) a continuous and complete norm | · | and (ii) an antilinear involution ∗
such that |a∗a| = |a|2.
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2.1.3 Linear Forms and Measures

Given an algebra with a continuous norm A, its topological dual A∗ is the vector space of continuous
linear forms on A. The topological dual defines a contravariant functor Algop → Vect as any linear
map T : A→ A′ has an adjoint map T ∗ : A′∗ → A∗ defined for all λ ∈ A′∗ and a ∈ A by:

〈T ∗λ | a 〉 = 〈λ |Ta 〉 (2.8)

The duality comes from the underlying vector space and is common enough not to be discussed. We
only briefly review some classical constructions and notations.

When A = C(E) is the real algebra of continuous and bounded functions over E, its dual A∗ is the
space of Borel measures of finite mass on E, equipped with the L1-norm:

〈λ | f 〉 =
∫
x∈E

f(x) · λ(dx) (2.9)

for all λ ∈ A∗ and f ∈ A, with
∣∣〈λ | f 〉∣∣ ≤ ||f ||∞ · ||λ||1.

A continuous map ϕ : E → E′ induces a map of algebras ϕ∗ : A′ → A by pull-back. Its adjoint
map is the push-forward of measures ϕ∗ : A∗ → A′∗, defined for every λ ∈ A∗ and every measurable
subset S′ ⊆ E′ by:

(ϕ∗λ)(S′) =
∫
x∈ϕ−1(S′)

λ(dx) (2.10)

When E is finite, the push-forward of a measure λ ∈ A∗ is given by its weight on each point x′ ∈ E′:

(ϕ∗λ)(x′) =
∑

ϕ(x)=x′
λ(x) (2.11)

In applications, the set maps we will consider are projections of the form ϕ : E1 × E2 → E1. The
pushforward of ϕ is then called the marginal projection on E1, or partial integration along E2.

When A = B(H) is the algebra of bounded operators on a Hilbert space, equipped with a continuous
trace operator Tr : A → C, one may define the hermitian scalar product of a and b in A by Tr(a∗b).
A linear form λ ∈ A∗, that is also continuous for the hermitian norm induced, may be represented by
an element of B(H) such that:

〈λ | a 〉 = Tr(λ∗a) (2.12)

This point of view is the most commonly used in quantum statistics.

2.1.4 Statistical States

A state of a unital involutive algebra A is a linear form ω ∈ A∗ satisfying the two following axioms:

(i) ω(a∗a) ≥ 0 for all a ∈ A (positivity)
(ii) ω(1) = 1 (normalisation)

The states of A form a convex subset of linear forms ∆ ⊆ A∗.

When A = C(E) is commutative and A∗ is the space of finite mass measures on E, the above
axioms define positive measures of mass 1, i.e. probability densities on E and we have ∆ = Prob(E).
According to Gelfand’s theorem, any commutative C*-algebra is isomorphic to a complex algebra
C(E,C) of continuous bounded functions over a compact space E, called the spectrum of A.

35



When A is a generic C*-algebra, the Gelfand-Naimark-Segal construction associates to each state
ω ∈ ∆ a Hilbert space representation Hω and a unit cyclic vector ψω ∈ Hω such that for all a ∈ A:

ω(a) = 〈ψω | a · ψω 〉 (2.13)

In quantum mechanics, this expression traditionally defines the mean value of a self-adjoint observable
a when the system is in the state ψω ∈ Hω. For every self-adjoint a, the spectral projections of
ψω define a probability distribution on the spectrum of a. This may be viewed as a consequence of
Gelfand’s theorem, as the commutative C*-algebra generated by a and a∗ is isomorphic to C(Sp a).

When A ⊆ B(H) is already represented on a Hilbert space and is equipped with a trace operator,
operators of B(H) are mapped to linear forms. Any positive operator ρ ∈ B(H)+ such that Tr(ρ) = 1
then defines a state of A by letting for all a ∈ A:

ρ(a) = Tr(ρa) (2.14)

This picture can lead to confusion with the previous one, as H is not the GNS representation of ρ.
The operator ρ may however be viewed as a vector of the Hilbert space H ⊗ H∗, of which the GNS
representation Hρ is a subspace. In statistical quantum mechanics, ρ is called the density matrix.

2.2 Systems

This section introduces the differential and module structures on which relies the present work.
The theory will be treated abstractly to keep as much generality as possible, and deals with what one
may call systems of algebraic structures, i.e. a particular type of functors.

One should still read the theory with the contents of the previous section in mind, to which it
aims to be applied. The main idea is to localise the previous structures from a global set of variables
Ω = {i, j, k, . . . } to a covering of Ω by smaller regions X = {α, β, γ, . . . } ⊆ P(Ω). This leads to the
definition of local configuration spaces, local algebras of observables, etc. related by morphisms every
time a region is contained in another. Giving (X,⊇) a category structure by agreeing that a unique
arrow α→ β exists whenever α contains β, we will get functors6 from X to Set, Alg, etc.

Aα Aα′

Aβ

jαβ jα′β

The main result of this section is that we may define a chain complex
(
A•(X), δ

)
of observables. Its

boundary operator δ will play a crucial role in describing the Lagrange multipliers of the cluster varia-
tion method and in defining transport equations that generalise belief propagation. This construction
was already considered by Grothendieck and Verdier under the name of canonical projective resolution
for presheaves [30, 19]. Their motivations having been more abstract, aiming at the unification of all
known homology and cohomology theories, we believe the present work has the benefit of providing a
simple and concrete application of this complex. The interaction decomposition theorem 2.8 will also
allow us to clarify the structure of homology groups in our setting.

6Functors with a partial order as source category are often called systems in the literature, as they were considered
long before the categorical language became common use.
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2.2.1 Systems of Sets

Given a numerable set of atoms Ω and a configuration space Ei for all i ∈ Ω, let:

Eα =
∏
i∈α

Ei (2.15)

denote the configuration space of α ⊆ Ω. There is a projection πβα : Eα → Eβ for every α ⊇ β,
forgetting the state of atoms outside β. This will consist of our fundamental example of a projective
system of sets, for any collection of regions X ⊆ P(Ω).

Eα Eα′

Eβ
πβα πβα

′
(2.16)

When X covers Ω, the system efficiently keeps all the available information, as the global configuration
space can be recovered as the projective limit EΩ = limα∈X Eα.

Definition 2.1. A system of sets E over a partial order X is a covariant functor E : X → Set.
Denoting by ϕ∗ : Eα → Eβ the map induced by ϕ : α→ β in X, a system is said:

− injective when ϕ∗ is an injection for all ϕ.
− projective when ϕ∗ is a surjection for all ϕ,

The functor category [X,Set] of systems over X has natural transformations η : E → E′ as morphisms.

A functor t : X → X ′ induces a pull-back functor t∗ : [X ′,Set]→ [X,Set] defined by t∗E′ = E′ ◦ t.
This allows to compare the categories of systems over different partial orders X and X ′ and to define
a global category of systems of sets over an arbitrary partial order.

Definition 2.2. We denote by {Set} the category of systems of sets, with:

− objects (X,E) where X is a partial order and E is a system of sets over X,
− morphisms (t, η) : (X,E) → (X ′, E′) where t : X → X ′ is a functor and η : E → t∗E′ is a

natural transformation.

We introduce the notation {Set} to avoid confusion with the larger category of functors [−,Set]
as the source category X is restricted to partial orders. As a subcategory of the latter, it should be
thought of in the same way, and the partial order hypothesis will have no influence until the next
section.

Examples.

1. A single set E is a system over the point category {•}.

2. The restriction of a system over X to a subcategory Y ⊆ X is naturally mapped into the original
system. This provides with a trivial example of morphism in {Set}.

3. Given an equivalence relation ∼ in X, any system E over X induces a system Ē over the quotient
space X̄ = (X/ ∼) defined by:

Ē[α] =
⊔
α′∼α

Eα′ (2.17)

Denoting by p : X → X̄ the quotient map, the natural transformation from E to p∗Ē is canoni-
cally defined by inclusion of Eα in the disjoint union Ē[α].
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2.2.2 Systems of Abelian Groups

The category {Ab} of abelian group systems is defined by restricting to functors G : X → Ab. To
such a systemG, we shall associate chain and cochain complexes denoted by

(
G•(X), δ

)
and

(
G•(X), d

)
respectively. Their construction extends G to a functor on the nerve7 of X and in the following we
denote by ᾱ ∈ Np(X) a p-chain α0 → . . .→ αp in X.

Consider the contravariant functor Ĝ : N(X)op → Ab defined by Ĝᾱ = Gα0 for all ᾱ ∈ Np(X).
For every subchain β̄ of ᾱ, the map Ĝᾱ → Ĝβ̄ is induced by Gα0 → Gβ0 as α0 → β0. The simplicial
set structure of N(X) thus makes Ĝ a simplicial abelian group, and Ĝ defines a chain complex G•(X)
equipped with a boundary operator δ : Gn+1(X)→ Gn(X), where:

Gn(X) =
∏

ᾱ∈Nn(X)

Ĝᾱ (2.18)

Reciprocally, a covariant functor Ǧ : N(X)→ Ab is defined by letting Ǧᾱ = Gαp for ᾱ ∈ Np(X).
When β̄ is a subchain of degree k ≤ p of ᾱ, we have a map Ǧβ̄ → Ǧᾱ as βk → αp. Hence Ǧ is a cosim-
plicial abelian group and defines a cochain complex G•(X) with a differential d : Gn(X)→ Gn+1(X),
where:

Gn(X) =
∏

ᾱ∈Nn(X)

Ǧᾱ (2.19)

Dual constructions of course arise when G : Xop → Ab is a cosystem over X. In this case we still
let Ĝᾱ = Gα0 and Ǧᾱ = Gαp to define functors Ĝ : N(X)→ Ab and Ǧ : N(X)op → Ab. Applications
will involve both covariant and contravariant functors of abelian groups but their extension to the
nerve will mostly be done through Ǧ. The following table might be useful:

*
(
G•(X), δ

) (
G•(X), d

)
G : X → Ab Ĝ Ǧ

G : Xop → Ab Ǧ Ĝ

Fundamental Example.

1. When E : X → Set is a system of sets over (X,⊇), it defines a cosystem of algebrasA : Xop → Alg
by letting Aα = REα for all α ∈ X. In the chain complex (A•(X), δ), a 1-chain ϕ is defined by
a collection of local observables ϕαβ ∈ REβ and its boundary δϕ given by:

δϕβ(xβ) =
∑
α′⊃β

ϕα′β(xβ)−
∑
β⊃γ′

jβγ′(ϕβγ′)(xβ) (2.20)

where jβγ(ϕβγ) ∈ REβ denotes the pullback of ϕβγ ∈ REγ under the map xβ ∈ Eβ 7→ xγ ∈ Eγ .
For ϕ ∈ An+1(X), its boundary δϕ ∈ An(X) is similarly given by:

δϕβ0...βn(xβn) =
∑
α0⊃β0

ϕα0β0...βn(xβn)

+
n∑
k=1

(−1)k
∑

βk−1⊃αk⊃βk

ϕβ0...βk−1αkβk...βn(xβn)

+ (−1)n+1
∑

βn⊃αn+1

ϕβ0...βnαn+1(xαn+1)

(2.20.n)

where xαn+1 denotes8 the image of xβn for every βn ⊇ αn+1.
7The nerve of a category is defined in paragraph 1.3.2.
8When Eα =

∏
i∈α Ei, the forgetful map xα 7→ xβ will simply be suggested by lowering the subscript α to β ⊆ α.

Functions on Eα that do not depend on xαrβ belong to the subalgebra REβ ⊆ REα . The inclusion map jβα : REβ → REα
is a restriction of the identity and will therefore be kept implicit in our notation.
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2. When E : X → Set and A = RE , duality defines a system of vector spaces A∗ : X → Vect.
In the cochain9 complex (A∗•(X), d), a 0-cochain q is defined by a collection of linear forms
qα ∈ L(REα ,R) and its differential dq given by:

dqαβ = qβ − Σβα(qα) (2.21)

where Σβα(qα) ∈ L(REβ ,R) denotes the pushforward of qα ∈ L(REα ,R) by the map Eα → Eβ .
For ψ ∈ A∗n(X), its differential dψ ∈ An+1(X) is similarly given by, in coordinates:

dψα0...αn+1(xαn+1) = ψα1...αn+1(xαn+1)

+
n∑
k=1

(−1)k ψα0...αk−1αk+1...αn+1(xαn+1)

+ (−1)n+1
∑

x′αn 7→xαn+1

ψα0...αn(x′αn)
(2.21.n)

the last sum running over preimages x′αn ∈ Eαn of xαn+1 ∈ Eαn+1 , both sets assumed finite10.

The difference of incoming and departing fluxes defining δϕ in (2.20) recalls the classical divergence
operator of differential geometry. Acting on a smooth vector field ~ϕ : R3 → R3, the divergence is
intrinsically related to the fundamental Gauss formula:∫

V

div(~ϕ) dv =
∫
∂V

~ϕ · ~n ds (2.22)

Integrating div(~ϕ) on a volume V ⊆ R3 yields the outbound11 flux of ~ϕ through the boundary of V .

Proposition 2.3 plays a crucial role in understanding the topological structure of message-passing
algorithms. To serve as counterparts for the integration12 supports of (2.22), let us denote by:

− Λα = {β ∈ X | α→ β} the cone below α in X,
− dΛα = {α′β′ ∈ N1(X) | α′ 6∈ Λα, β′ ∈ Λα} the coboundary of Λα.

Proposition 2.3 (Gauss Formula). Given a cosystem G : Xop → Ab of abelian groups, let (G•(X), δ)
denote the associated chain complex. For every ϕ ∈ G1(X), we have:∑

β′∈Λα
(δϕ)β′ =

∑
α′β′∈dΛα

ϕα′β′ (2.23)

Proof. In the sum of δϕ over Λα, each term ϕβ′γ′ is counted twice with opposite signs if β′ ∈ Λα.

Figure 2.1: X ⊆ P(Ω) illustrated as (a) a Venn diagram and (b) a semi-lattice.
The colored region represents Λα = {β′ ⊆ α} while arrows represent some of the
flux contributions to the Gauss formula

∑
β′∈Λα δϕβ′ =

∑
α′β′∈dΛα ϕα′β′ .

9Although it is a cochain complex, we write degrees as indices for A∗•(X) as it is the dual vector space of A•(X).
10Otherwise replace with an integral over the preimage of {xαn+1} in Eαn under the right integrability assumptions.
11With the sign convention from physics. In Hodge theory where d∗ = −div, an inbound flux is measured instead.
12The sum over Λα is the zeta transform of chapter 3. Proposition 2.3 hence provides with a beautiful illustration of

the analogy between Möbius inversion formulas and the fundamental theorem of calculus already noted by Rota in [25].
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2.2.3 Systems of Rings and Modules

The category {Ring} of ring systems is similarly defined by restricting to functors R : X → Ring.
To avoid confusion in applications to come, it will be more convenient to consider cosystems over X,
i.e. functors R : Xop → Ring. This subsection, mostly inspired by Kodaira [13], explores the different
products and module structures one may generalise from the usual theory with scalar coefficients.

Given a cosystem of rings R over X, we give a natural ring structure
(
R•(X),+,∧

)
to its associated

cochain complex, by defining the exterior13 product of a p-field ϕ with a k-field ψ as the (p+ k)-field:

(ϕ ∧ ψ)α...β...γ = ϕα...β ·
[
ψβ...γ

]
α

(2.24)

where [ψβ...γ ]α denotes the image of ψβ...γ ∈ Rβ in Rα. The exterior product is compatible with the
differential and we have the graded Leibniz rule:

d(ϕ ∧ ψ) = dϕ ∧ ψ + (−1)|ϕ| ϕ ∧ dψ (2.25)

denoting by |ϕ| the degree of ϕ, and
(
R•(X),+,∧, d

)
is a differential ring.

There is a natural notion of module over a ring system which makes any ring system a module over
itself. The dual notion of comodule will also be of interest to us, they both give a differential module
structure to one of the associated complexes.

Definition 2.4. We call module over R : Xop → Ring any cosystem of abelian groups M : Xop → Ab
such that:
− Mα is an Rα-module for all α ∈ X,
− [rβ ]α · [mβ ]α = [rβ ·mβ ]α for all α→ β in X.

where [mβ ]α denotes the image of mβ in Mα.

When M is a module over R, the cochain complex M•(X) inherits a module structure over R•(X)
for the action of ϕ ∈ Rp(X) on m ∈Mk(X) extending the exterior product:

(ϕ×m)α...β...γ = ϕα...β ·
[
mβ...γ

]
α

(2.26)

and the differential ∇ on M•(X) then satisfies the graded module Leibniz rule:

∇(ϕ×m) = dϕ×m+ (−1)|ϕ| ϕ×∇m (2.27)

so that
(
M•(X),∇

)
is a differential module over

(
R•(X), d

)
.

Definition 2.5. We call comodule over R : Xop → Ring any system of abelian groups M : X → Ab
such that:
− Mα is an Rα-module for all α ∈ X,
− rβ · [mα]β = [rβ ·mα]β for all α→ β in X.

where [mα]β denotes the image of mα in Mβ and · the action of any Rβ such that α→ β on Mα.

When M is a comodule over R, the action of ϕ ∈ Rk(X) on m ∈Mn(X) is the chain of Mn−k(X)
given by the interior product:

(ϕym)β...γ =
∑
α′...β

ϕα′...β ·
[
mα′...β...γ

]
β

(2.28)

and by (ϕym) = 0 when n < k. Note that y actually defines a right action as (ϕ∧ψ)ym = ψy (ϕym).
The boundary of M•(X) satisfies the graded module Leibniz rule:

δ(ϕyψ) = dϕyψ + (−1)|ϕ| ϕy δψ (2.29)

and
(
M•(X), δ

)
is a differential module over

(
R•(X), d

)
.

Examples.
13With scalar coefficients, ∧ is called the Alexander product in Kodaira [13].
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1. Consider the constant ring system Z over X, and for every α ∈ X, the 1-cochain λα ∈ Z1(X)
defined by:

λαα′β′ =
{

1 if α′ = α
0 if α′ 6= α

(2.30)

An easy computation shows that dλβ ∈ Z2(X) may be written for all β ∈ X as:

dλβ =
∑
α→β

λα ∧ λβ (2.31)

2. Any cosystem of algebras A : Xop → Alg is a comodule over Z. For every β ∈ X we then denote
by iβ the degree −1 endomorphism of A•(X) defined by iβ(ϕ) = λβyϕ. For every γ̄ ∈ N(X), if
β 6→ γ0 we have iβ(ϕ)γ̄ = 0 and otherwise:

iβ(ϕ)γ̄ = ϕβγ̄ (2.32)

The previous example and the graded module Leibniz rule give the following formula:

δ(iβϕ) = iβ

( ∑
α→β

iαϕ
)
− iβ(δϕ) (2.33)

which will be very useful in the proof of proposition 3.13.

2.3 Local Statistics

Localising the statistical structures of section 1, this section restricts the previous constructions to
a projective system of sets given by cartesian products Eα =

∏
i∈αEi of atomic configuration spaces,

and focuses on the inductive system Aα = REα of algebras induced above it.

A fundamental consequence of this hypothesis is the so-called interaction decomposition theorem.
It asserts that each algebra of observables splits as a direct sum Aα =

⊕
β Zβ , where the interaction

vector spaces Zβ may be chosen consistently over X and play the role of independent generators14.
This well-known yet subtle result may be given a significant number of proofs and calls for greater
generality, but the simple setting we consider allows for a beautiful proof via harmonic analysis15.

The main result of this section is the acyclicity16 of the complex of local observables A•(X). We
show that the homology class of h ∈ A0(X) is completely determined by its global sum HΩ =

∑
α hα

in AΩ. In a physical terminology, one would say that two potentials h and h′ are homologous if and
only if they define the same global hamiltonian HΩ.

14This fact motivates the free sheaves terminology of [3], where a slightly more general setting was considered with
Bennequin and Sergeant. The present hypotheses are however enough to cover all the applications to statistics we shall
be interested in.

15The theorem name, interaction decomposition, was suggested by the regretted František Matǔs, whom we had the
chance to meet in Marseille in 2017. We follow his proof given [17] for its elegance, see also [10, 28, 3].

16Acyclicity means that higher homology groups vanish, i.e. Ker(δn) = Im(δn+1) ⊆ An(X) for every n > 1.
The sequence A0(X) ← A1(X) ← . . . hence provides with a projective resolution of the first homology group
Ker(δ0)/ Im(δ1) = A0(X)/δA1(X), in which the global hamiltonian lies, thanks to the isomorphism of theorem 2.14.
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2.3.1 Statistical System

From now on, we consider a finite set of atoms Ω with finite sets of microstates Ei for all i ∈ Ω.
The configuration space Eα of any region α ⊆ Ω is defined as:

Eα =
∏
i∈α

Ei (2.34)

For every α ⊇ β, we denote the canonical projection by πβα : Eα → Eβ . Alternatively, one could say
that E :

(
P(Ω),⊇

)
→ Set defines a sheaf of finite sets over the finite topological space Ω.

Given these sets of microstates, local algebras of observables are defined by Aα = REα and for
every α ⊇ β, the canonical injection jαβ : Aβ → Aα is the pull-back of πβα sending a function on Eβ
to its cylindrical extension on Eα. The multiplicative structure of E is carried to A by:

Aα =
⊗
i∈α

Ai (2.35)

as Aα is linearly generated by the Dirac masses (δxα) on Eα, which may be written as pure tensors of
the form δxi ⊗ · · · ⊗ δxj , and the extension map jαβ may then be viewed as the tensor multiplication
1αrβ⊗− with the unit of Aαrβ . Better suited generators (χkα) will be introduced in the next section.

In the following, we suppose chosen a covering X ⊆ P(Ω) closed under intersection, i.e. such that:

α ∈ X and β ∈ X ⇒ α ∩ β ∈ X (2.36)

We then restrict E to a system E : X → Set and A to a cosystem A : Xop → Alg over X. The closure
hypothesis is fundamental for the interaction decomposition theorem to hold, it will also be useful for
the generalised combinatorics we propose in chapter 3.

Definition 2.6. We denote by:
−
(
A•(X), δ

)
the chain complex of local observables,

−
(
A∗•(X), d

)
the cochain complex of local measures,

− ∆•(X) ⊆ A∗•(X) the convex subspace of local probabilities.

This localisation procedure will lead us to represent the global hamiltonian HΩ ∈ AΩ by a homology
class of interaction potentials (hα) ∈ A0(X) satisfying:

HΩ =
∑
α∈X

hα (2.37)

The global Gibbs state pΩ ∈ ∆Ω would also be ideally represented by its local marginals (pα) ∈ ∆0(X)
or an approximation of the latter. Marginals of pΩ are said consistent as pβ is the marginal of pα for
every β ⊆ α, and the following more general notion of cohomology class in ∆0(X) will substitute for
the global probabilities of ∆Ω.

Definition 2.7. The convex subspace Γ(X) of consistent local probabilities is defined by:

Γ(X) = ∆0(X) ∩Ker(d) (2.38)

We also denote by Γ̊(X) the space of consistent positive local probabilities.

The image of ∆Ω in ∆0(X) is in general a strict convex polytope of Γ(X), as although any consistent
q ∈ Γ(X) may always be extended to a global measure qΩ ∈ A∗Ω, the non-negativity of qΩ is not insured.
This was already noticed by Vorob’ev who first characterised the simplicial complexes X having the
property that any consistent family of probabilities in Γ(X) may be extended17 to ∆Ω. They essentially
coincide with the retractable hypergraphs on which we show message-passing algorithms to be exact
in chapter 6.

17See also [1] for a sheaf theoretic approach of this problem, and relations to the notion of contextuality. The complex
we consider is related to a barycentric subdivision to the complex of [1], as the categorical nerve subdivides the Čech
nerve of a covering, and the isomorphism of homology groups is proved in [3].
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2.3.2 Interaction Decomposition

For every α ⊇ β in X, the algebra Aβ is naturally embedded in Aα. Therefore Aα contains
observables that may be split as a sum of observables on strict subregions of α. We call them boundary
observables and write:

Bα =
∑
α⊃β

Aβ (2.39)

We say that Zα is an interaction subspace of Aα if it is a supplement of Bα. One may then write:

Aα = Zα ⊕
( ∑
α⊃β

Aβ

)
(2.40)

and continue this procedure inductively, which is the content of the interaction decomposition theorem.

Theorem 2.8. Given an interaction subspace Zα ⊆ Aα for every α ∈ X, one has for all α:

Aα =
⊕
α⊇β

Zβ (2.41)

It will be useful to consider the following rewording of the theorem. In this point of view, interaction
subspaces define a cosystem of vector spaces Z : Xop → Vect with trivial maps, embedded in A, and
we denote by Z0(X) their direct sum viewed as a subspace of A0(X).

Corollary 2.9. Given a choice of interaction subspaces, we have a projection P : A0(X) → Z0(X)
given by:

P (u)β =
∑
α⊇β

P βα(uα) (2.42)

where P βα : Aα → Zβ is a projection of Aα onto Zβ, vanishing on Zγ for every γ 6= β.

The theorem asserts that a direct sum decomposition holds for any choice of interaction subspaces.
As supplements of boundary observables, they are not defined intrinsically, although unless explicit
mention of the opposite, Zα will from now on be assumed orthogonal to Bα for the canonical scalar
product of REα . This choice will play a particular role in describing the high temperature limit, see
for instance 5.11 and 6.29.

Definition 2.10. The canonical interaction subspaces Zα ⊆ Aα are defined as orthogonal supplements
of boundary observables for the canonical scalar product of Aα ' REα :

Zα =
(∑
β⊂α

Im
(
jαβ
))⊥

⇔ Zα =
⋂
β⊂α

Ker
(
Σβα

)
(2.43)

Instead of proving 2.8 in its generality18, inspired by Matǔs, we show how harmonic analysis gives
an enlightening perspective on the canonical interaction decomposition. This seems to be the most
natural construction of the projections P βα and is the one we implemented in javascript.

Chose an ordering of Ej for all j ∈ Ω, so that each Eα may be identified with the finite torus:

Eα '
∏
j∈α

Z
NjZ

(2.44)

and consider for every α ∈ X the complexified algebra of observables Ãα = CEα . It is a fundamental
result of abelian group theory that the spectrum Êα = Hom(Eα,C∗) of Eα defines an orthormal

18[[appendix: proof by action of permutations]]
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basis of Ãα for its canonical hermitian product, where the so-called characters of Êα are plane waves
generating a discrete Fourier transform on Ãα.

By duality, there is a natural injection Êβ → Êα by pull-back of the projection πβα : Eα → Eβ .
Consider the subset F̂α ⊆ Êα of characters defined by:

F̂α =
⋃
β⊂α

Êβ (2.45)

It is easily seen that F̂α is an orthonormal basis of the subspace B̃α of complex boundary observables.
Its complement Ĝα then provides with an orthonormal basis of the interaction subspace Z̃α = B̃⊥α .
The interaction decomposition theorem here amounts to the observation that Êα is recovered as the
disjoint union:

Êα =
⊔
β⊆α

Ĝβ (2.46)

A boundary observable in Ãα is spanned by plane waves with wave vectors tangent to some Eβ with
β ⊂ α, and the spectral support of an interaction observable is in the complement of such wave vectors.

Figure 2.2: Spectral decomposition Êα =
⊔
β⊆α Ĝβ .

More concretely, define for every kα ∈ Eα the character χkα ∈ Êα by:

χkα(xα) = ei〈 kα | xα 〉 where 〈 kα |xα 〉 =
∑
j∈α

kjxj
2πNj

(2.47)

The character χkβ ∈ Êβ is extended to Êα by letting kj = 0 for j /∈ β. Identifying Êα with Eα, the
discrete Fourier transform defines a unitary transformation of Ãα. For all uα ∈ Ãα, write:

uα =
∑

kα∈Eα

ûα(kα) · χkα (2.48)

The orthogonal projection P βα : Ãα → Z̃β is then simply given by selecting only the modes ofGβ ⊆ Eβ ,
complement of

⋃
β⊂γ Eγ :

P βα(uα) =
∑

kβ∈Gβ

ûα(kβ) · χkβ (2.49)

The real Fourier transform on Aα would obviously give a similar explicit construction of real
interaction subspaces. This construction appealed to us for both its great conceptual simplicity and
ease of implementation. It however strongly relies on the multiplicative structure of the underlying
system of sets.
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The following proposition gives a more abstract characterisation of interaction subspaces, as other
approaches19 would be necessary for general inductive systems of vector spaces. Note that it is not
true in general that the inductive limit splits as a direct sum.

Proposition 2.11. The inductive limit of A is isomorphic to the direct sum of interaction subspaces:

Z0(X) ' colim
α∈X

Aα (2.50)

Proof. Let (V, f) denote a cone20 below A defined by a collection of consistent maps fβ : Aβ → V .
Identify (V, f) with a map f : A0(X) → V and suppose given f̃ : Z0(X) → V such that f̃ ◦ P = f .
Then for every vα ∈ Zα ⊆ A0(X), we have f̃(vα) = f(vα). This defines a unique map f̃ : Z0(X)→ V
factorising f through P , and Z0(X) satisfies the universal property of the colimit.

The inclusions of each Aα into the global algebra AΩ induce a map ζΩ : A0(X)→ AΩ on the direct
sum, given by:

ζΩ : h 7−→
∑
α∈X

hα (2.51)

We denote by BΩ ⊆ AΩ its image. It follows from the previous proposition that we have a universal
map from Z0(X) to BΩ, factorising ζΩ through P :

A0(X) Z0(X)

BΩ ⊆ AΩ

P

ζΩ

(2.52)

Chosing a global interaction subspace to write AΩ = ZΩ⊕BΩ, the interaction decomposition theorem
asserts that AΩ = ZΩ ⊕ Z0(X) so that Z0(X) and BΩ are isomorphic. This allows for two different
representations of the inductive limit, a local one, and a global one.

Proposition 2.12. The two following maps are equivalent representations of colimA:

(i) P : A0(X) −→ Z0(X)
(ii) ζΩ : A0(X) −→ BΩ

2.3.3 Homology and Cohomology

The global hamiltonian HΩ of a physical system is typically given as a sum of local interactions:

HΩ =
∑
α∈X

hα (2.53)

and we will see that HΩ = ζΩ(h) represents a unique homology class in A0(X). The interaction
decomposition theorem is essential to compute the homology of A•(X). We shall first characterise the
first homology of A0(X) and the first cohomology of A∗0(X), both isomorphic to Z0(X), before proving
the acyclicity of the whole complex A•(X).

Theorem 2.13. The interaction projection P : A0(X)→ Z0(X) induces an isomorphism in the first
homology group of observable fields:

A0(X)
δA1(X) ' Z0(X) (2.54)

19See [3] where the decomposition is carried in a much more general setting.
20See section 1.2 for the categorical definition of limits.
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Proof. A Gauss formula on the cone over β ∈ X first ensures that for all ϕ ∈ A1(X), we have:

P (δϕ)β =
∑
α′→β

P βα
′
(δα′ϕ) =

∑
α′→β

∑
β′ 6→β

P βα
′
(ϕα′β′) = 0 (2.55)

as P βα′(Aβ′) is non-zero if and only if β′ contains β. Hence P vanishes on boundaries and we denote the
induced quotient map by [P ]. Reciprocally, given u ∈ A0(X) we define ϕ ∈ A1(X) by ϕαβ = P βα(uα)
and consider its boundary:

δβϕ =
∑
α′→β

ϕα′β −
∑
β→γ′

ϕβγ′ = P (u)β − uβ (2.56)

When P (u) = 0, the above gives u = −δϕ so that Ker(P ) = δA1(X). Hence [P ] is injective and
induces an isomorphism between H0(X) = A0(X)/δA1(X) and its image Z0(X).

It is now a simple consequence of the previous subsection that total energy, viewed as a global
observable of AΩ, is a maximal homological invariant of A0(X):

Corollary 2.14. Two observable fields h, h′ ∈ A0(X) are homologous if and only if:∑
α∈X

hα =
∑
α∈X

h′α (2.57)

and ζΩ : A0(X)→ BΩ induces an isomorphism in homology.

Theorem 2.13 implies that the first cohomology of A∗0(X) is also isomorphic to Z0(X) by duality. It
is however very instructive to construct the isomorphism explicity, as this representation of consistent
measures already involves a fundamental automorphism ζ of A0(X), the zeta transform, main object
of the next chapter. We shall later rewrite theorem 2.15 as:

Ker(d) ' ζ ′ · Z0(X) (2.58)

Erratum: The action of ζ ′ is defined by (2.59) below. Although it requires to rescale the injection
of Aβ into Aα by volumic factors, it still fits under the definition of zeta transforms given by (3.16).
Without the volumic terms, one has Ker(∇) = ζ · Z0(X) as per (5.11), where ∇ is also an adjoint
of δ, but where partial integrations have been replaced by conditional expectations for the uniform
measure.

Theorem 2.15. A collection of measures (qα) ∈ A∗0(X) is consistent if and only if there exists a
collection of interaction potentials (uα) ∈ Z0(X) such that for all α ∈ X:

qα =
∑
α⊇β

|Eβ |
|Eα|
〈uβ | − 〉α (2.59)

where 〈− |− 〉α denotes the canonical scalar product of REα .

Proof. As Σβα is the orthogonal projection onto REβ ⊆ REα for the canonical scalar product of REα ,
we have Σβα(Zγ) = Zγ for every γ ⊆ β and Σβα(Zγ) = 0 otherwise. Hence for every q ∈ A∗0(X) of the
form (2.59) one has:

Σβα(qα) =
∑
α⊇γ

Σβα
(
|Eγ |
|Eα|

uγ

)
=
∑
β⊇γ

|Eγ |
|Eβ |

uγ = qβ (2.60)

Reciprocally, given a consistent q ∈ A∗0(X) one may recover u ∈ Z0(X) by Möbius inversion, see 3.1.
It however suffices here to conclude by dimension using theorem 2.13.
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Let us now prove the acyclicity of A•(X) by constructing an explicit retraction of A•(X) to Z0(X).
For every α ∈ X, we denote by zα and bα the coherent projectors onto Zα and Bα, so that:

idAα = zα ⊕ bα (2.61)

They induce projectors z and b onto the subspaces Z•(X) and B•(X) of A•(X).

Denoting by d the adjoint of δ for the canonical metric of A•(X), consider the homotopy η = z◦d◦b.
Explicitly, η : Ap(X)→ Ap+1(X) acts on ϕ ∈ Ap(X) by:

η(ϕ)ᾱβ = (−1)p+1 zβ(ϕᾱ) (2.62)

Proposition 2.16. The map η = z db defines a homotopy between the identity of A•(X) and the
homogeneous extension of the interaction projection P : A•(X)→ Z0(X):

ηδ + δη = 1− P (2.63)

Proof. First, notice that B•(X) is stable under δ so that zδb = 0 and δ splits in the triangular form:

δ = bδb + bδz + zδz (2.64)

As η = zdb, we then have:

δη + ηδ = (bδz)η + η(bδz) + z(δη + ηδ)b (2.65)

As maps between Z•(X) and B•(X), the interaction theorem implies that bδz inverts η on non-zero
degrees. More precisely, for every p ≥ 1 and ϕ ∈ Ap(X) we have:

(bδz)(ϕ)β̄ = (−1)p
∑
β̄⊃γ′

zγ(ϕβ̄γ′) (2.66)

Denoting by z0 the homogeneous projection onto Z0(X) induced by z, we may write:

(bδz)η = b and η(bδz) = z− z0 (2.67)

so that (bδz)η + η(bδz) = 1− z0 and it only remains to show that z(δη + ηδ)b = z0 − P .

On the zero degree, we have for all u ∈ A0(X) and β ∈ X:

(zδη)(u)β = −
∑
α′⊃β

zβ(uα′) (2.68)

which is precisely z0(u)β − P (u)β .

On higher degrees, we have for every ϕ ∈ Ap(X) and β̄ ∈ Np(X):

(zδη)(ϕ)β̄ = (−1)p+1
p∑
k=0

(−1)k
∑

∂kᾱ′=β̄

zα′p+1
(ϕα′0...α′p) (2.69)

The last summand k = p+1 of δη(ϕ)β̄ is valued in Bβ̄ and truncated by zβp which enforces α′p+1 = βp.
On the other hand, we have:

(ηδb)(ϕ)β̄ = zβp
(

(−1)p
p∑
k=0

(−1)k
∑

δkβ̄′=β0...βp−1

bβ′p(ϕβ̄′)
)

(2.70)

Whenever βp 6⊂ β′p, we have zβp ◦ bβ′p = 0. We may hence assume that βp ⊂ β′p and let ᾱ′ = β̄′βp so
that for every k ≤ p we have:

δkᾱ
′ = (δkβ̄′)βp = β̄ (2.71)

Comparing with the above, we see that zδη + ηδb vanishes on non-zero degrees, while it is equal to
zδη = z0 − P otherwise, which finishes to show that:

δη + ηδ = 1− z0 + z0 − P = 1− P (2.72)
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Theorem 2.17. The homology groups of A•(X) are given by:

H0(X) ' Z0(X) and Hn(X) = 0 for n ≥ 1 (2.73)
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Chapter 3

Combinatorics

In this chapter, we review the classical theory of Dirichlet convolution and Möbius inversion. They
give algebraic foundations to many combinatorial problems, starting with the so-called inclusion-
exclusion principles, generalising the usual formula |Ei ∪ Ej | = |Ei|+ |Ej | − |Ei ∩ Ej |. The following
structures however really emerged from considerations of number theory.

These methods give insight on the conceptual distinction between intensive and extensive quantities,
stemming from the definition internal hamiltonian of a region α ⊆ Ω as a sum of local interactions:

Hα =
∑
α⊇β

hβ (3.1)

The extensivity of H may be thought of as a consequence of the quick decay of h on large regions1.
Möbius inversion will show the relation between H and h to be bijective, a fundamental correspondence
which will be written as:

H = ζ · h ⇔ h = µ ·H (3.2)

In section 1, we start by reviewing the classical theory of incidence algebra. In section 2 we inves-
tigate some interesting properties and exhibit a locally cohomological character of the zeta transform
h 7→ ζ · h. In the last and exploratory section, we propose an extension of ζ and µ as two reciprocal
endomorphisms on the whole complex of observable fields A•(X). This extension of ζ to higher degrees
is done consistently with the local cocyle properties satisfied on the zero degree, while the degree one
Möbius transform will allow for various enhancements of the belief propagation algorithm.

1This remark shall be made more precise in the next chapter, where the extensivity of entropy a priori justifies the
Bethe approximation scheme.
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3.1 Dirichlet Convolution

The convolution product on the set of arithmetic functions f : N∗ → C was first introduced by
Dirichlet in 1837 to prove his theorem on arithmetic progressions. Relying on the partial order structure
of N∗ induced by divisibility, it is given by:

(f ∗ g)(n) =
∑
d|n

f(d) g(n/d) (3.3)

A meromorphic function f̂ may be associated to every arithmetic function f of subpolynomial growth
by analytic extension of its Dirichlet generating series, defined for all s ∈ C such that Re(s) is large
enough by:

f̂(s) =
∑
n∈N∗

f(n)
ns

(3.4)

The assignment f 7→ f̂ interlaces Dirichlet convolution with the usual product on C and we have for
every arithmetic functions f and g:

f̂ ∗ g = f̂ · ĝ (3.5)

The Riemann zeta function ζ̂ extends the generating series of the arithmetic function ζ, defined by
ζ(n) = 1 for all n ∈ N∗. The classical Möbius inversion formula states that ζ has an inverse for ∗ given
by µ(n) = (−1)k if n is the product of k distinct primes, and zero otherwise. This in turn yields the
coefficients of the generating series of µ̂ = 1/ζ̂.

Dirichlet convolution and Möbius inversion formulas were then studied in more general contexts,
notably by Fréchet, and a fundamental and seminal reference on the subject is the general treatment
of Möbius functions given by Rota in [25]. Dirichlet convolution may not only be defined on a locally
finite partial order but on any locally finite category. We however restrict to the former and refer the
interested reader to [14] for greater generality.

3.1.1 Incidence Ring

Given a locally finite2 partially ordered set X and a unital ring R, let us denote by R1(X) the
R-module of R-valued functions on the set N1X of 1-chains in X:

R1(X) =
{
ϕ : X ×X → R | α 6→ β ⇒ ϕαβ = 0

}
= RN1X (3.6)

It is equipped with the Dirichlet convolution product ∗ defined for every ϕ,ψ ∈ R1(X) by:

(ϕ ∗ ψ)αγ =
∑

α→β′→γ

ϕαβ′ · ψβ′γ (3.7)

This product is associative. It has a unit 1, which is the Kronecker symbol3 defined by 1αα = 1 and
1αβ = 0 if α 6= β.

The unital ring
(
R1(X),+, ∗

)
is called the incidence ring of X, or incidence algebra when R is a

field. Combinatorics are however mostly interested with relative integers and it is remarkable that
Möbius inversion can be carried out on Z.

2X is locally finite if the set of non-degenerate chains from any element to an other is finite.
3We prevent from using the usual Kronecker symbol notation δ to avoid confusion with codifferentials.
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3.1.2 Incidence Modules

Let M denote a module on R, and denote by M1(X) the space of M -valued functions on N1X.
Then M1(X) is a module on the incidence ring R1(X) for the left action defined for m ∈M1(X) by:

(ϕ ·m)αγ =
∑

α→β′→γ

ϕαβ′ ·mβ′γ (3.8)

when M is a left R-module, and symetrically, for the right action:

(m · ψ)αγ =
∑

α→β′→γ

mαβ′ · ψβ′γ (3.9)

when M is a right R-module.

Let us now denote by M0(X) the space of M -valued functions on X. It is also equipped with a left
action of R1(X) defined for every n ∈M0(X) by:

(ϕ · n)α =
∑
α→β′

ϕαβ′ · nβ′ (3.10)

when M is a left module, and otherwise with the right action:

(n · ψ)β =
∑
α′→β

nα′ · ψα′β (3.11)

Following Rota, one may relate these two actions and append to X initial and terminal elements
0 and 1 when necessary, defining a possibly larger poset X̄. To m ∈ M1(X) associate n ∈ M0(X) by
nα = mα1. This interlaces the two left actions of R1(X̄) on whenM is a left module. Similarly, letting
nβ = m0β interlaces the two right actions.

Notice that whenM = R = R, the vector spaces R1(X) and R0(X) have a canonical scalar product
for which the left and right actions define adjoint endomorphisms.

3.1.3 Systems

Given a cosystem R : Xop → Ring, we may similarly equip the space of upper 1-fields R1(X) with
a convolution product. There is a ring morphism Rα ← Rβ for every α→ β in X, and for rβ ∈ Rβ we
denote by [rβ ]α its image in Rα. Then for ϕ,ψ ∈ R1(X), let:

(ϕ ∗ ψ)αγ =
∑

α→β′→γ

ϕαβ′ · [ψβ′γ ]α (3.12)

By duality, we may similarly define the convolution product ∗ on the space of lower fields R1(X) when
R : X → Ring is a system of rings.

When M : Xop → Ring is a module over the cosystem R, we may extend the left action of R1(X)
on the space of upper 1-fields M1(X). We have a morphism Mα ←Mβ for every α→ β in X, and for
every mβ ∈Mβ , we still denote by [mβ ]α its image in Mα. The action is then given by:

(ϕ · ψ)αγ =
∑

α→β′→γ

ϕαβ′ · [mβ′γ ]α (3.13)

And a left action of R1(X) can similarly be defined on M0(X) by:

(ϕ ·m)α =
∑
α→β′

ϕαβ′ · [mβ′ ]α (3.14)
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The action of Z1(X) on the module A0(X) of observable fields, falls into this case. It is the main
example we shall be interested in, before considering functors M assigning to each Mα the space of
functionals on A0(Λα) or on the set Σα of states of Aα.

If R is a fixed ring, then R1(X) = R1(X) has a natural action on the space of lower fields M1(X):

(ϕ ·m)αγ =
∑
α→β′

ϕαβ′ ·mβ′γ (3.15)

Although functoriality of M does not appear, this case is worth mentioning as it covers for instance
the action of Z1(X) on A1(X).

Dual constructions take place when M is a covariant functor. In particular, this is the case when
M = A∗ is the module of linear forms on observables, and the right action of Z1(X) on A∗0(X) is the
adjoint of its left action on A0(X).

3.2 Properties of the Zeta Transform

The zeta function ζ ∈ Z1(X) is defined by ζαβ = 1 for all α→ β in X. Given a cosystem of abelian
groups M : Xop → Ab, the left action of ζ on M0(X) is given by:

(ζ · f)α =
∑
α→β

[fβ ]α (3.16)

This section exposes elementary properties of the endomorphism thus defined on M0(X). The first
one, bijectivity, is given by the classical Möbius inversion formulas. The next one, locality, is also
significant however obvious it is. As an easy consequence of the previous chapter, we then introduce
a local cocycle property satisfied by the zeta transform.

3.2.1 Möbius Inversion

The fundamental theorem of Möbius inversion states that ζ has an inverse µ ∈ Z1(X) for Dirichlet
convolution, it naturally implies the bijectivity of the zeta transform on any module.

Theorem 3.1 (Möbius - Rota). The inverse of ζ ∈ Z1(X) is the Möbius function µ ∈ Z1(X):

µ =
∑
k≥0

(−1)k(ζ − 1)k (3.17)

Proof. The n-th power of ζ for ∗ counts the number of n-chains between any two elements α, β ∈ X:

ζnαβ =
∑

α=α0→...→αn=β
1 (3.18)

and (ζ − 1)nαβ similarly counts the number of non-degenerate n-chains from α to β. Because X is
locally finite, there exists N such that (ζ − 1)Nαβ = 0 and ζ = 1 + (ζ − 1) is invertible.

Note that more practical identities arise from the relations µ ∗ ζ = ζ ∗ µ = 1, allowing to compute
the values of µ inductively. Starting from µαα = 1, one may for instance iterate over γ under α:

µαγ = 1−
∑

α≥β′>γ

µαβ′ (3.19)
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The Möbius function µ is closely related to diverse inclusion-exclusion principles. Consider for example
the problem of finding a collection of integers (cα) ∈ Z0(X) such that for all β ∈ X:∑

α′→β

cα′ = 1 (3.20)

One may compute these coefficients inductively starting from maximal cells. Note that this expression
involves the right action of ζ, and as by Möbius inversion c · ζ = 1 is equivalent to c = 1 · µ we have:

cβ =
∑
α′→β

µα′β (3.21)

We call c = 1 · µ and c̄ = µ · 1 the right and left Möbius numbers.

Given X ⊆ X̃, let us say that X is full if for all α ∈ X, every β ∈ X̃ such that β ⊆ α is also in X.

Proposition 3.2. If X is full in X̃, then the restriction of the Möbius function of X̃ to X is the
Möbius function of X.

Proposition 3.3. If X̃ = {Ω}tX completes X with an initial element Ω and µ̃ ∈ Z1(X̃) denotes the
Möbius function on X̃, then for every β ∈ X we have cβ = −µ̃Ωβ.

Proof. The Möbius inversion formula in X̃ between Ω and β ∈ X gives:∑
Ω→α→β

µ̃αβ = µ̃Ωβ +
∑
α→β

µαβ = µ̃Ωβ + cβ = 0 (3.22)

Examples.

1. Let X = N denote the standard total order of integers. The Möbius function is given by µαα = 1
and µαβ = −1 if β = α+ 1, zero otherwise. We recover the classical finite differences formula:

Uα =
α∑
β=0

uβ ⇔ uα = Uα − Uα−1 (3.23)

which is the discrete version of the fundamental theorem of calculus.

2. Let X = P(Ω) for a finite set Ω and denote by |α| the cardinal of α ⊆ Ω. The Möbius function
is then given by:

µαβ = (−1)|α|−|β| (3.24)
Suppose given now for each i ∈ Ω a measurable subset Ai of some probability space, relate to:

P(∪i∈αAi) =
∑
β⊆α

(−1)|β|P(∩j∈βAj) (3.25)

3. Total interaction4P βα and marginal projections Σβα.

Σβα =
∑
β→γ′

P γ
′α ⇔ P βα =

∑
β→γ′

µβγ′ · Σγ
′α (3.26)

This is a property of the canonical metric and the marginal projections, beware that in general:

Eβα 6=
∑
β→γ′

P γ
′α (3.27)

as
⊕

γ 6∈Λβ Zγ might not be the orthogonal to Aβ in Aα.
4See the interaction decomposition theorem 2.8 for the definition of Pβα.
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3.2.2 Locality

For every α ∈ X, we denote by Λα the cone under α consisting of those β ∈ X such that α → β.
As subset of X, there is a natural restriction map:

rα : M0(X) −→M0(Λα) (3.28)

For every f ∈M0(X) the value of (ζ · f)α only depends on the values fβ for α→ β. In other words, ζ
commutes with the restriction to Λα and we have rα ◦ ζ = ζ ◦ rα.

M0(X) M0(Λα)

M0(X) M0(Λα)

rα

ζ ζ

rα

(3.29)

This locality property comes from the form of the action of Z1(X) on M0(X) and is absolutely not
specific to ζ. Such local endomorphisms preserve the sheaf structure5 of M0(X).

Denoting by iα : M0(X) → Mα the evaluation on α, a consequence of the locality of ζ is that we
may factorise iα ◦ ζ through rα:

M0(X) M0(Λα)

Mα

rα

iαζ
ζα

(3.30)

We denote by ζα the factorised map, and will now show that ζα induces a map in homology.

3.2.3 Local Cocycle Property

In this paragraph, we relate the Gauss formula 2.3 to properties of the zeta transform, fortifying
its analogy with integral calculus underlined by Rota. Recall that the coboundary of Λα was defined
as the set of 1-chains dΛα =

{
α′β′ ∈ N1(X)

∣∣ β′ ∈ Λα and α′ 6∈ Λα
}
so that for every ϕ ∈M1(X):

∑
β′∈Λα

δβ′ϕ =
∑

α′β′∈dΛα
ϕα′β′

In chapter 5, we shall rely on this Gauss formula to relate belief propagation to a transport equation.
Its right hand side may also be related to the zeta transform, as expressed by the following equivalent
proposition, while extending the zeta transform toM1(X) will allow for the even more natural formula
(3.55) of the next section.

Proposition 3.4. For every ϕ ∈M1(X), we have:

ζ(δϕ)α =
∑
α′ 6∈Λα

ζ(iα′ϕ)α (3.31)

In particular, iαζ vanishes on δM1(Λα).

5For the restriction maps M0(Y )→M0(Z) induced by every Z ⊆ Y ⊆ X.
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It follows from proposition 3.4 property that ζα factorises through the canonical projection of
M0(Λα) onto its quotient by δM1(Λα):

M0(Λα) M0(Λα)
δM1(Λα)

Mα

ζα

(3.32)

and in particular, ζα induces a map in homology [ζα] : H0(Λα) −→ Mα. In the case of the complex
of local observables A•(X) defined in 2.6, it follows from theorem 2.14 that [ζα] actually induces
an isomorphism between the homology classes of A0(Λα) and its image Bα ⊆ Aα. This fact is a
consequence of the interaction decomposition theorem, and in general, [ζα] may fail to be injective.

3.3 Higher Degree Combinatorics

In this section, we extend the zeta transform to a full endomorphism of the chain complex M•(X)
satisfying higher degree analogs of the previous section properties. Our initial motivation was to search
for a higher degree diffusion equation that would generalise belief propagation. This program appeared
only feasible for the linearised algorithm, although it soon became clear to us that the degree 1 zeta
transform was already hidden in the degree 0 algorithm with Dirichlet boundary conditions, and that
modifying the degree 0 algorithm to perform a degree 1 Möbius inversion on its messages seemed
deeply natural to eliminate their redundancies.

In proving the invertibility of our extension of ζ, we will need to assume that X ⊆ P(Ω) is closed
under intersection6 and forms a semi-lattice. For every β ∈ X and α0 . . . αn ∈ Nn(X), we denote
by β ∩ (α0 . . . αn) the possibly degenerate chain (β ∩ α0) . . . (β ∩ αn), while it will be implicit in our
notations that fields vanish on non-ordered sequences.

3.3.1 Extended Zeta Transform

For every α ∈ X and β ⊆ α, we denote by Λαβ the complement of Λβ in Λα. When ϕ ∈ M1(X) is
of degree one, we shall define ζ(ϕ)αβ as the flux passing from Λα to Λβ :

ζ(ϕ)αβ =
∑
β′∈Λα

β

∑
γ′∈Λβ

ϕβ′γ′ (3.33)

More generally, a chain α0 . . . αn in Nn(X) yields a sequence of cones Λα0 ⊇ . . . ⊇ Λαn and we simply
define ζ by summing in the interspaces.

Definition 3.5. We extend the zeta transform to ζ : M•(X)→M•(X) by letting for every ϕ ∈Mn(X):

ζ(ϕ)α0...αn =
∑

β0∈Λα0
α1

∑
β1∈Λα1

α2

· · ·
∑

βn∈Λαn
ϕβ0...βn (3.34)

From the above formula, it clearly appears that the definition of ζ involves an inductive extension
to higher degrees and the following proposition will greatly ease computations.

6The same hypothesis was necessary for the interaction decomposition to hold, section 2.3.2.
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Proposition 3.6. For every n ≥ 1, the action of ζ on Mn(X) is related to that on Mn−1(X) by:

ζ(ϕ)α0...αn =
∑

β0∈Λα0
α1

ζ(iβ0ϕ)α1...αn (3.35)

3.3.2 Locality and Colocality

For any α ∈ X, the zeta transform still commutes with the restriction to Λα:

M•(X) M•(Λα)

M•(X) M•(Λα)

rα

ζ ζ

rα

(3.36)

The locality of ζ is better precised by the following proposition, that makes use of the semi-lattice
structure of X and will soon come to use in extending Möbius inversion.

Proposition 3.7. For every β ∈ X and α0 . . . αn ∈ Nn(X), we have:

ζ(rβϕ)α0...αn = ζ(ϕ)β∩(α0...αn) (3.37)

Proof. As rβϕ is supported inside Λβ , the sums over Λαiαi+1
may be restricted to Λβ ∩Λαiαi+1

= Λβ∩αiβ∩αi+1
.

Locality also implies that for every n ≥ 1, composing the partial evaluation iα0 : Mn(X)→Mn−1(Λα0)
with ζ factorises through rα0 :

Mn(X) Mn(Λα0)

Mn−1(Λα0)

rα0

iα0ζ
(3.38)

A more subtle observation on the support of ζ is given by the following dual property, expressing the
independence of iα1iα0ζ with respect to fields supported inside Λα1 .

Proposition 3.8. For every α0 . . . αn ∈ Nn(X) and ϕ ∈Mn(Λα1), we have ζ(ϕ)α0...αn = 0.

The sum defining ζ(ϕ)α0...αn indeed only involves evaluations in the first argument of ϕ inside
Λα0
α1

= Λα0 r Λα1 and does not depend on the restriction of ϕ to Λα1 . The kernel of iα1iα0ζ hence
contains Mn(Λα1) and we have the following factorisation:

Mn(X) Mn(Λα0)
Mn(Λα1)

Mn−2(Λα1)
iα1 iα0ζ

(3.39)
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3.3.3 Extended Möbius Transform

The definition of µ will make use of the semi-lattice structure of X. For every unordered sequence
β0, . . . , βn ∈ X, let us denote by [β0 . . . βn]∩ the n-chain β0(β0 ∩ β1) . . . (β0 ∩ · · · ∩ βn).

Definition 3.9. We extend the Möbius transform to µ : M•(X)→M•(X) by letting for all Φ ∈Mn(X):

µ(Φ)α0...αn =
∑

βn∈Λαn
µαnβn · · ·

∑
β1∈Λα1

β2

µα1β1

∑
β0∈Λα0

β1

µα0β0 · Φ[β0...βn]∩ (3.40)

In contrast with ζ, the supports of the sums defining µ do depend on the summation variables βi.
We may still give an inductive construction of µ, allowing to conveniently prove reciprocity with ζ.
For every α0 ∈ X and n ≥ 1, let us introduce the map να0 : Mn(X)→Mn−1(X) defined by:

να0(Φ)α1...αn =
∑

β0∈Λα0
α1

µα0β0 · Φβ0∩(α0...αn) (3.41)

and extend this map to να0 : M0(X)→Mα0 by letting:

να0(Φ) =
∑

β0∈Λα0

µα0β0 · Φβ0 (3.42)

The action of µ ∈ Mn(X) then deduces from that on Mn−1(X) by the relation iα0 ◦ µ = µ ◦ να0 as
expressed by the following proposition.

Proposition 3.10. For every α0 . . . αn ∈ Nn(X) and Φ ∈Mn(X), we have:

µ(Φ)α0...αn = ναn . . . να0(Φ) (3.43)

Proof. In the last sum over β0 ∈ Λα0
β1

defining µ(Φ)α0...αn , we may recognise να0(Φ)[β1...βn]∩

With this characterisation of µ, we may now generalise the Möbius inversion formula to M•(X).
Having two reciprocal endomorphisms ζ and µ acting on all degrees will allow to conjugate non-
homogeneous operators and consider7 for instance δζ = ζ ◦ δ ◦ µ or ∇µ = µ ◦ ∇ ◦ ζ.

Theorem 3.11. The Möbius transform is the inverse of the zeta transform.

The proof8 of the inversion theorem will come as an easy consequence of the following lemma:

Lemma 3.12. For every α0 in X, we have:

να0 ◦ ζ = ζ ◦ iα0 (3.44)

The above extends to M0(X)→Mα0 by agreeing that ζ ◦ iα0 = iα0 ,

Proof. Injecting the recurrence relation defining ζ, we may write να0ζ(ϕ)α0...αn as:∑
β0∈Λα0

α1

µα0β0 · ζ(ϕ)β0∩(α0...αn) =
∑

β0∈Λα0
α1

µα0β0

∑
γ0∈Λβ0∩Λα0

α1

ζ(iγ0ϕ)β0∩(α1...αn) (3.45)

As iγ0ϕ is supported in Λγ0 , we have ζ(iγ0ϕ)β0∩(α1...αn) = ζ(iγ0ϕ)γ0∩(α1...αn) in virtue of prop.3.7.
Both β0 and γ0 running over Λα0

α1
with the only additional condition that β0 → γ0, we have:

να0ζ(ϕ)α0...αn =
∑

γ0∈Λα0
α1

( ∑
α0→β0→γ0

µα0β0

)
ζ(iγ0ϕ)γ0∩(α1...αn) (3.46)

7See chapter 5.
8[[appendix: add explicit computation on A1(X).]]
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Recognising the classical Möbius inversion formula (µ ∗ ζ)α0γ0 = 1α0γ0 , we get:

να0ζ(ϕ)α0...αn = ζ(iα0ϕ)α1...αn (3.47)

When ϕ is of degree zero the identity reduces to the να0ζ(ϕ) = µζ(ϕ)α0 = ϕα0 .

Proof of theorem 3.11. For every α0 . . . αn in Nn(X), we have:

iαn . . . iα0 ◦ µ ◦ ζ = ναn . . . να0 ◦ ζ
= ζ ◦ iαn . . . iα0

= iαn . . . iα0

(3.48)

3.3.4 Local Cocycle Property

The following formula is the higher degree analog of proposition 3.4.

Proposition 3.13. For every α0 . . . αn ∈ Nn(X) and ψ ∈Mn+1(X) we have:

ζ(δψ)α0...αn =
∑

α′0 6∈Λα0

ζ(iα′0ψ)α0...αn (3.49)

In particular, if ψ ∈Mn(Λα0), then iα0ζ(δψ) = 0.

Proof. We will prove the relation by induction on the degree n. Let us first recall the module Leibniz
rule for the interior product y , in section 2.2 example 2:

δ ◦ iβ = iβ ◦
( ∑
α∈X

iα

)
− iβ ◦ δ (3.50)

For every ψ ∈Mn+1(X) and by construction of ζ, we may thus rewrite ζ(δψ)α0...αn as:∑
β0∈Λα0

α1

ζ(iβ0δψ)α1...αn =
∑

β0∈Λα0
α1

∑
α′0∈X

ζ(iβ0iα′0ψ)α1...αn

−
∑

β0∈Λα0
α1

ζ(δiβ0ψ)α1...αn

(3.51)

We may now use the proposition on degree n − 1 to rewrite the summand of the second term.
Because iβ0ψ is supported inside Λβ0 ⊆ Λα0 , observing that (X r Λα1) ∩ Λβ0 = Λα0

α1
∩ Λβ0 we get:

ζ(δiβ0ψ)α1...αn =
∑

α′1∈Λα0
α1

ζ(iα′1iβ0ψ)α1...αn = ζ(iβ0ψ)α0...αn (3.52)

Swapping the first two sums in the previous expression of ζ(δψ)α0...αn we are left with the difference:

ζ(δψ)α0...αn =
∑
α′0∈X

ζ(iα′0ψ)α0...αn −
∑

β0∈Λα0
α1

ζ(iβ0ψ)α0...αn (3.53)

In virtue of prop.3.8, we have ζ(iβ0ψ)α0...αn = 0 for every β0 ∈ Λα1 . We get the desired formula on
degree n by rewriting the second sum over β0 ∈ Λα0 .
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For every α0 ∈ X, the local cocyle property similarly implies that we have the factorisation:

Mn(X) Mn(Λα0)
δMn+1(Λα0)

Mn−1(Λα0)
iα0ζ

(3.54)

This will come as an essential feature of ζ when defining higher degree transport equations generalising
belief propagation. Letting a field ϕ ∈Mn(X) evolve up to a boundary term δψ, the partial evaluations
iα0Φ of its zeta transform Φ = ζ(ϕ) shall only depend on the generalised messages ψ coming from the
outside of Λα0 .

Note that when X contains a maximal element Ω, proposition 3.13 may be rewritten as:

ζ(δψ)ᾱ = ζ(ψ)Ωᾱ (3.55)

In general, formula (3.55) could serve as a natural definition for the notation ζ(ψ)Ωᾱ. One could also
define X̃ = {Ω}tX by prepending X with an initial element and extending the module system M by
MΩ = colimαMα. This point of view will be very useful in understanding the canonical diffusion flux
in chapter 5 and proving proposition 5.32.

Theorem 3.14. We have the commutation relation:

ζ̃ ◦ δ = iΩ ◦ ζ̃ (3.56)

so that ζ̃ : M•(X)→M•(X̃) defines a morphism of chain complexes between
(
M•(X), δ

)
and

(
M•(X̃), iΩ

)
on positive degrees, while M•(X̃) is naturally extended by M−1(X̃) = MΩ.

Note that M0(X) is then naturally isomorphic to the 0-cycles of M0(X̃). The extended complex
M•(X̃) is acyclic as iΩϕ = 0 implies ϕ = iΩ(eΩϕ), although this require M•(X) to be acyclic.
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Chapter 4

Energy and Information

Many laws of nature remarkably take the form of variational principles. Since the lagrangian
formulation of mechanics they have become a fundamental constituent of most physical theories, from
thermodynamics to modern quantum field theory. As likelihood optimisation problems, they are also
now a central occupation in data science and artificial intelligence, leading one to wonder if such
variational principles should not help in understanding the self-organisation of biological systems.
Set aside the theoretical beauty of variational principles remains the challenge of designing efficient
computations of their solutions, while local and parallel optimisation algorithms in return provide with
good abstract models1 for neuronal interactions.

Entropy generates such variational principles and could be seen as the main object of this chapter.
Legendre duality has long been a classical technique in thermodynamics, transforming variational
principles into differently constrained ones. Considering Legendre duality as a smooth correspondence
between observables and statistical states will motivate the formal study of free energy, viewed as a
functional of the hamiltonian, given in section 1. The functorial properties satisfied by effective energy,
a conditional form of free energy, will be essential to understand the structure of belief propagation
in chapter 5. Giving a fine description of the structure of interactions and correlations, we relate
mutual informations to a combinatorial localisation of entropy in section 2, which will be fundamental
in understanding the content of Bethe’s local approximation of entropy. The main result of this
chapter concludes section 3: we give a homological description of the solutions of Kikuchi’s cluster
variation method, which estimates the marginals of a global probabilistic model by attempting to
solve a variational principle on a local approximation of entropy.

1See for instance [7] for models of active inference and neuronal message-passing relying on belief propagation.
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4.1 Free and Effective Energies

In this section, we first review some fundamental properties of free energy, seen as a functional on
observables, although it is more customarily defined as a function of the inverse temperature θ = 1

kT
once given the hamiltonian H governing the system. Free energy is then defined from the partition
function Z(θ) =

∑
e−θH by letting F (θ) = − 1

θ lnZ(θ). It is well known that both functionals encode
many physical properties of the system: the partition function may be seen as the Laplace transform
of the spectral density of H and its derivatives yield the moments of H in the Gibbs state [e−θH ].

Temperature simply acts as an energy scaling and we here argue that given a region α ∈ X, free
energy is best seen as a smooth function Fα ∈ C∞(Aα) of the hamiltonian itself. More generally, for
every subregion β ⊆ α, partial integration along the fibers of Eα → Eβ in the sum defining Fα will yield
a smooth map Fβα ∈ C∞(Aα, Aβ) which we call effective energy. We finally show that our definition of
free energy simply generates Gibbs propability densities through its differential Fα∗ : Aα → A∗α, while
the differential of effective energies will yield conditional expectations in the Gibbs state.

4.1.1 Free Energy

Definition 4.1. For every α ∈ X, we call free energy the functional Fα ∈ C∞(Aα) defined by:

Fα(Hα) = − ln
(∑
Eα

e−Hα
)

(4.1)

This definition agrees with the free energy of an isolated system governed by the hamiltonian Hα

at inverse temperature θ = 1. One may reintroduce the temperature dependency by setting:

Fαθ (Hα) = θ−1Fα(θHα) (4.2)

A fundamental property of free energy is additivity along non-interacting subsystems, which may be
thought of as a weaker form of extensivity.

Proposition 4.2 (Additivity). If α is the disjoint union of β1, . . . , βn and Hα splits as
∑
iHβi , then:

Fα
(∑

i

Hβi

)
=
∑
i

Fβi(Hβi) (4.3)

Proof. When α = tiβi we have: − ln
∑
Eα

∏n
i=1 e−Hβi = − ln

∏n
i=1
∑
Eβi

e−Hβi

The additivity of Fα along constants may be seen as a particular case of the previous proposition,
identifying R with A∅. For every Hα ∈ Aα and λ ∈ R, we have:

Fα(Hα + λ) = Fα(Hα) + λ (4.4)

One should however note that Fα(0) 6= 0 and free energy contains an entropic contribution − ln |Eα|.
It is hence important for the previous proposition that the βi’s actually cover α, and one should beware
that Fα(Hβi) and Fβi(Hα) differ by the entropic term Fα(0)−Fβi(0). One should thus define a reduced
free energy functional F̃α by subtracting the entropic term to get F̃α ◦ jαβ = F̃β .

The free energy of Hα is by definition the additive constant we subtract from Hα to renormalise
the Gibbs density e−Hα : [

e−Hα
]

= e−Hα+Fα(Hα) (4.5)
The smooth hypersurface {Fα = 0} given by the image of Hα 7→ Hα − Fα(Hα) is hence diffeomorphic
to the space ∆̊α of non-vanishing probability densities. The Gibbs state is however even more naturally
recovered through the differential of Fα.
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Proposition 4.3 (Gibbs Expectations). The differential dFαθ : Aα → A∗α of free energy is given by:

dFαθ (Hα) = [e−θHα ] (4.6)

We shall denote by Eαθ ∈ Ω1(Aα) the differential of Fαθ viewed as a 1-form over Aα.

Proof. Using dex = ex dx and d ln(y) = dy
y we have for every perturbation fα of Hα ∈ Aα:

Fα(Hα + fα) = Fα(Hα) +
∑
fα e−Hα∑

e−Hα + o (fα) (4.7)

The linear term is precisely the expectation Eα[fα] relative to the Gibbs state [e−Hα ]. The formula at
generic temperatures easily follows from the chain rule applied to Hα 7→ θHα.

The previous proposition generalises the usual properties expected from thermodynamic poten-
tials, which yield thermodynamic variables through their derivatives. Fixing the hamiltonian Hα and
considering free energy as a sole function of inverse temperature, we would recover internal energy as:

Uα(θ) = Eαθ [Hα] = d(θFαθ )
dθ

(4.8)

Proposition 4.4 (Integral Form). The free energy of Hα ∈ Aα is given by the integral formula:

Fα(Hα) = Fα(0) +
∫ 1

θ=0
Eαθ [Hα] dθ (4.9)

where Eαθ denotes expectation in the Gibbs state [e−θHα ].

Proof. This is the fundamental theorem of calculus applied along the path θ 7→ θHα.

Another important property of free energy is concavity, as it will allow us to view Shannon entropy
as the Legendre transform of free energy in section 3.

Proposition 4.5 (Concavity). For every Uα, Vα ∈ Aα and t ∈ [0, 1], we have:

Fα
(
t Uα + (1− t)Vα

)
≥ tFα(Uα) + (1− t)Fα(Vα) (4.10)

Proof. Both x 7→ e−x and y 7→ − ln(y) are convex while the latter is order reversing.

A consequence of the concavity of free energy is the negative signature of its second differential,
explicitly given by the following proposition:

Proposition 4.6 (Fisher Metric). The second differential of free energy D2Fα : Aα → S2A∗α yields
the opposite covariance of observables with respect to the Gibbs state:

−D2Fα(fα, gα) = Eα[fα · gα]− Eα[fα] · Eα[gα] (4.11)

This is also the Fisher information metric for the exponential parametrisation of ∆̊α by Aα.

Proof. D2Fα(fα, gα) is the variation of Eα[fα] along a perturbation gα of the hamiltonian and:

− ∂

∂gα

(∑
fα e−Hα−gα∑

e−Hα−gα

)
=
∑
fα gα e−Hα∑

e−Hα −
(∑

fα e−Hα
)(∑

gα e−Hα
)(∑

e−Hα
)2 (4.12)

Note that Gibbs states induce a non-degenerate metric Eα[fα · gα], its image under the projection
fα 7→ fα−Eα[fα] being the covariance bilinear form. The exponential map (e−)α is a diffeomorphism
from the level hypersurface {Fα = 0} ⊆ Aα to the manifold ∆̊α of non-degenerate probability densities,
while the previous projection is precisely the orthogonal projection onto the tangent space of {Fα = 0}.
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4.1.2 Effective Energy

Partial integration defines a linear map Σβα : Aα → Aβ , associating to fα the observable on β:

Σβαfα : xβ 7−→
∑

y∈Eαrβ

fα(xβ , y) (4.13)

Partial integration is however not an algebra morphism and should rather be seen as an interlacing of
the natural map A∗α → A∗β with identifications of each algebra with its dual vector space. Effective
energy, as defined below, may then be thought of analogously:

Aα Aβ

Aα Aβ

Σβα

(− ln)β(e−)α
Fβα

(4.14)

Definition 4.7. For all α→ β in X, we call effective energy the map Fβα ∈ C∞(Aα, Aβ) defined by:

Fβα(Hα) = − ln
(

Σβα
(

e−Hα
))

(4.15)

Note that the free energy Fα is recovered as the effective energy of vacuum F∅α. More generally,
Fβα may be thought of as the conditional free energy of α given the microstate of β. This conditioning
is functorial, as expressed by this first remarkable property.

Proposition 4.8 (Functoriality). For every α→ β → γ in X, we have in C∞(Aα, Aγ):

Fγβ ◦ Fβα = Fγα (4.16)

Effective energies hence define a system F : X →Mfd of differentiable manifolds over X.

Proof. We have Fγβ ◦ Fβα(Hα) = − ln
(
Σγβ ◦ Σβα(e−Hα)

)
while Σγβ ◦ Σβα = Σγα.

The following weaker commutative diagram expresses that effective energy describes Gibbs states
marginalisation at the level of hamiltonians. Consistency of the Gibbs states will hence transpose to a
notion of effective consistency on hamiltonians, requiring that Hβ = Fβα(Hα) for every α→ β in X.

Aα Aβ

∆̊α ∆̊β

Fβα

[e−]α [e−]β

Σβα

(4.17)

Proposition 4.9 (Marginalisation). For every α→ β in X we have:

Σβα
[

e−Hα
]

=
[

e−F
βα(Hα) ] (4.18)

The following proposition expresses that information on the microstates outside the support of a
hamiltonian does not affect effective energy. More precisely, given a hamiltonian Hα ∈ Aα and β ⊆ α,
extending Hα to α′ = α t γ and letting β′ = β t γ, we have the commutative diagram:

Aα′ Aβ′

Aα Aβ

Fβ
′α′

jα′α

Fβα
jβ′β (4.19)
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Proposition 4.10. If β ⊆ α and Hα ∈ Aα, then for every β′ ⊆ α′ such that αr β = α′ r β′:

Fβ
′α′(Hα) = Fβα(Hα) (4.20)

Proof. Σβ′α′ and Σβα involve a sum over the same variables and e−Hα only depends on those in α.

Just like conditional independence generalises the notion of independence, additivity of free energy
along uninteracting subsystems generalises to the following conditional form:

Proposition 4.11 (Pairwise Conditional Additivity). If α = β ∪ β′ and β ∩ β′ = γ, we have:

Fγα(Hβ +Hβ′) = Fγβ(Hβ) + Fγβ
′
(Hβ′) (4.21)

Proof. We have − ln
(
Σγα(e−Hβ e−Hβ′ )

)
= − ln

(
Σγβ(e−Hβ ) Σγβ′(e−H

′
β )
)
as Σγα involves a sum over

the variables in the disjoint union (β r γ) t (β′ r γ), while e−Hβ is independent of the variables in
β′ r γ and reciprocally.

In particular, Fβα is additive along Aβ so that for every Hα ∈ Aα and Hβ ∈ Aβ we have:

Fβα(Hα +Hβ) = Fβα(Hα) +Hβ (4.22)

As before, one should beware that Fβα(0) 6= 0 as effective energy contains the entropic term− ln |Eαrβ |.
The reduced effective energy F̃βα defined by subtracting this term to Fβα is a smooth section of jαβ .
Considering larger coverings, we may now rewrite conditional additivity as follows:

Proposition 4.12 (Conditional Additivity). If α is the union of β1, . . . , βn and Hα splits as
∑
iHβi ,

then denoting by γi the intersection of βi with
⋃
j 6=i βj and by γ the reunion

⋃
i γi we have:

Fγα
(∑

i

Hβi

)
=
∑
i

Fγiβi(Hβi) (4.23)

Proof. Reasoning by induction on n, let β̃1 = β1∪γ and β̃2 =
⋃n
j=2 βj∪γ with hamiltonians H̃β̃1

= Hβ1

and H̃β̃2
=
∑n
i>1Hβi . Pairwise conditional additivity gives Fγα(

∑
iHβi) = Fγβ̃1(H̃β̃1

) + Fγβ̃2(H̃β̃2
) as

β̃1 ∩ β̃2 = γ, while Fγβ̃1(Hβ1) and Fγ1β1(Hβ1) coincide as conditional free energies of β̃1 r γ = β1 r γ1.
The induction hypothesis applied to Fγβ̃2(H̃β̃2

) then terminates the proof.

Effective energy is still a concave functional in the sense below, and its point-wise Legendre trans-
form above xβ ∈ Eβ will generate the conditional Shannon entropy Sα(pα|xβ) defined in section 2.

Proposition 4.13 (Concavity). For every Uα, Vα ∈ Aα and t ∈ [0, 1], we have:

Fβα
(
t Uα + (1− t)Vα

)
≥ tFβα(Uα) + (1− t)Fβα(Vα) (4.24)

the inequality being understood in the partial order of functions on Eβ.

While the Gibbs state was recovered through the differential of free energy, the differential of
effective energy carries the effects of Gibbs state conditioning.

Proposition 4.14 (Conditional Expectations). The differential dFβα : Aα → A∗α ⊗ Aβ of effective
energy is the conditional expectation given the microstate of β with respect to the Gibbs state on α:

dFβα(Hα) :
{
Aα −→ Aβ
fα 7−→ Eα[ fα | β ] (4.25)

We denote by Eβα ∈ Ω1(Aα, Aβ) the differential of Fβα viewed as an Aβ-valued 1-form over Aα.
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Proof. Using again dex = ex dx and d ln(y) = dy
y we now have for every perturbation fα of Hα:

Fβα(Hα + fα) = Fβα(Hα) + Σβα(fα e−Hα)
Σβα(e−Hα) + o (fα) (4.26)

Rescaling the fraction by the normalisation factor Σ∅α(e−Hα), denoting by pα the Gibbs state on α
and by pβ its marginal on β, the linear term rewrites as:

Σβα
(
fα ·

pα
pβ

)
= Epα [fα | β] (4.27)

As according to the Bayes rule, pα/pβ is the conditional probability on α given the microstate of β.

Conditional expectation has a simple geometrical characterisation which is worth recalling. For the
riemannian metric on Aα induced by the Gibbs state:

(fα , gα) = Eα[fα · gα] (4.28)

Eβα is just the orthogonal projection of Aα onto the subspace Aβ of observables depending only on
the state of β. One might hope for a consistent orthogonal splitting of Aα as2 ⊕Zβ , defining each
interaction subspace Zβ by orthogonality with Bβ . However, as soon as β and β′ interact with each
other, correlations will imply that Zβ is no longer orthogonal to Zβ′ for the metric on Aα.

Proposition 4.15 (Integral Form). The effecive energy of Hα ∈ Aα on β is given by the integral:

Fβα(Hα) = Fβα(0) +
∫ 1

θ=0
Eβαθ [Hα] dθ (4.29)

where Eβαθ denotes conditional expectation with respect to the Gibbs state [e−θHα ].

Proof. This is again the fundamental theorem of calculus applied along the path θ 7→ θHα.

4.2 Information Quantities

This section introduces the Shannon entropy functional, also called Shannon information. We then
relate mutual information quantities with a combinatorial decomposition of entropy into summands,
on which will rely Bethe-Kikuchi local approximations of entropy and the cluster variation method.

2See the interaction decomposition theorem, section 2.3.2.
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4.2.1 Shannon Entropy

Given a finite set Eα, we denote by ∆α the space of probability measures on Eα. Shannon entropy
is the concave functional Sα : ∆α → R defined by:

Sα(pα) = −
∑
Eα

pα ln(pα) (4.30)

It reaches its global maximum Sα([1α]) = ln |Eα| on the uniform measure, which may be called the
Boltzmann entropy of Eα. Let us briefly recall some fundamental properties of entropy. Plenty of good
resources already exist on the subject, see for instance [23] or any reference on information geometry3.

Given a surjection πβα : Eα → Eβ , and pα ∈ ∆α, let us denote by pβ = Σβα(pα) its marginal
distribution on Eβ and by pα|xβ its conditional probability distribution given any xβ ∈ Eβ , supported
by the fiber of xβ . The conditional entropy of pα given Eβ is defined as:

Sα(pα | pβ) =
∑

xβ∈Eβ

pβ(xβ) · Sα(pα|xβ ) = −
∑

xβ∈Eβ

∑
x′∈Eαrβ

pα(xβ , x′) ln pα(xβ , x′)
pβ(xβ) (4.31)

When Eα = Eβ × Eγ and pα = pβ ⊗ pγ then an easy computation shows that Sα(pα | pβ) = Sγ(pγ).

The fundamental property of entropy is the chain rule:

Sα(pα) = Sβ(pβ) + Sα(pα | pβ) (4.32)

Shannon showed that entropy is essentially characterised by this functional equation4, up to a mul-
tiplicative constant and under an additional monotonicity condition with respect to the cardinal of
Eα. When pα = ⊗β′pβ′ is a tensor product of independent probabilities on Eα =

∏
β′ Eβ′ , we have in

particular:
Sα(pα) =

∑
β′

Sβ′(pβ′) (4.33)

expressing that entropy is additive along independent systems5.

4.2.2 Möbius Inversion

For every α ∈ X, let us denote by Fα = C∞(∆α) the vector space of smooth functionals on ∆α.
For every α→ β, the pullback of the marginal projection ∆α → ∆β defines an injection Fα ← Fβ , so
that F is a contravariant functor of vector spaces on X. In particular, Z̃1(X) acts on F0(X) and for
every collection of functionals (Lα) we have the equivalence:

Lα =
∑
α→β′

[lβ′ ]α ⇔ lα =
∑
α→β′

µαβ′ · [Lβ′ ]α (4.34)

We call l ∈ F0(X) the combinatorial localisation of L .

A particular case of functionals is given by the expectation values of observables. GivenH ∈ A0(X),
let U ∈ F0(X) be defined for every α ∈ X by:

Uα(pα) = 〈 pα |Hα 〉 = Epα [Hα] (4.35)

3Other references to specific properties of entropy will be given inline, such as [2, 31, 14].
4This functional equation was given a natural interpretation in the context of monads and operads by Leinster [14],

and also retrieved as a cocycle equation by Bennequin and Vigneaux, see [31].
5This should be related to the additivity property of free energy 4.2.
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The natural map from A0(X) to F0(X) is a morphism of Z̃1(X)-modules. When H = ζ · h, the
localisation of U as ζ · u defines another field of functionals u ∈ F0(X) where:

uα(pα) = 〈 pα |hα 〉 = Epα [hα] (4.36)

The internal energy of a system UΩ is the expectation value of the global hamiltonian HΩ, typically
given as a sum

∑
α hα of local interactions with hΩ = 0. This remark will prove the Bethe approxi-

mation scheme to be exact on internal energy, as UΩ =
∑
α uα with uΩ = 0.

4.2.3 Mutual Informations

Suppose given n random variables X1, . . .Xn. In this paragraph, we introduce the various amounts
of mutual information, following Hu Kuo Ting in [9]. First, denote by S(Xi ∪Xj) the entropy of their
joint law (Xi,Xj). If the variables were pairwise independent, the chain rule of entropy would give for
all distinct i, j:

S(Xi ∪ Xj) = S(Xi) + S(Xj) (4.37)

But more generally, denoting by S(Xi|Xj) the conditional entropy of (Xi,Xj) given Xj , we have:

S(Xi ∪ Xj) = S(Xi|Xj) + S(Xj) (4.38)

We may define a quantity S(Xi ∩ Xj) as the difference S(Xi) − S(Xi|Xj). These relations naturally
remind of those satisfied by an additive function on sets, where independent variables correspond to
disjoint subsets, and conditioning describes set difference. Note however that in the following theorem,
the order of logical operations matters (see Bennequin-Baudot [2] for examples).

Theorem 4.16 (Hu Kuo Ting). Given random variables X1, . . . ,Xn and their probability distributions,
there exists sets A1, . . . , An and an additive real function ϕ on the algebra generated by those sets, such
that for all operation Q generated by ∪,∩ and − which 1) forms collections of unions 2) takes successive
intersections of these unions and 3) subtracts one of them, one has:

S(Q(X1, . . . ,Xn)) = ϕ(Q(A1, . . . , An)) (4.39)

All quantities obtained this way are generically called amounts of information by Hu Kuo Ting. Of
particular importance are the mutual informations, appearing in the right hand side of:

S(Xi1 ∪ · · · ∪ Xik) =
∑

1≤p≤k
S(Xip)−

∑
1≤p<q≤k

S(Xip ∩ Xiq ) + · · ·+ (−1)k+1 S(Xi1 ∩ · · · ∩ Xik) (4.40)

We will denote the mutual information of Xi1 , . . .Xik by:

I(Xi1 , . . . ,Xik) = S(Xi1 ∩ · · · ∩ Xik) (4.41)

The following theorems will best express the significance of mutual informations. Although very similar
in appearance, the second theorem is a much more recent result than the first, proved in [2].

Theorem 4.17 (Hu). X1, . . .Xn form a Markov chain if and only if for all 1 ≤ i1 < · · · < ik ≤ n:

I(Xi1 , . . .Xik) = I(Xi1 ,Xik) (4.42)

Theorem 4.18 (Bennequin). X1, . . . ,Xn are independent if and only if for all 1 ≤ i1, . . . , ik ≤ n:

I(Xi1 , . . . ,Xik) = 0 (4.43)
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Let us give an explicit definition of mutual informations as functionals of the probability distribu-
tions, by relating Hu Kuo Ting’s construction to a Möbius inversion on entropy functionals. Denoting
by (Xi)i∈Ω a finite set of random variables, and by pα the joint law of (Xi)i∈α for every α ⊆ Ω, each
joint entropy may be expressed as:

Sα(pα) =
∑
α⊇β′

sβ′(pβ′) (4.44)

Comparing with Hu Kuo Ting’s formula, the mutual information Iβ(pβ) is then given by (−1)|β|+1 sβ .
The entropy summands given by Möbius inversion on P(Ω) satisfy:

sα(pα) =
∑
α⊇β′

(−1)|α|−|β
′| Sβ′(pβ′) (4.45)

while mutual informations are given by:

Iα(pα) =
∑
α⊇β′

(−1)|β
′|+1 Sβ′(pβ′) (4.46)

Fixing α ∈ X, this expression may also be seen as a Möbius inversion on the opposite partial order
spanned by each Xi for i ∈ α, viewed as a maximal element.

4.2.4 Bethe Entropy

As first recognised by Morita in [21], Bethe’s approximation of entropy is essentially a truncation
of the previous Möbius inversion procedure. Consider a general covering X ⊆ P(Ω) not containing
Ω, and let X̄ = {Ω} ∪X. Through Möbius inversion on X̄, entropy can still be exactly localised by
s ∈ F0(X̄) with:

sα =
∑
α→β′

µαβ′ · [Sβ′ ]α (4.47)

In particular, the global entropy SΩ is recovered as:

SΩ = sΩ +
∑
α∈X

[sα]Ω (4.48)

The Bethe approximation of entropy ŠΩ = SΩ − sΩ, according to the previous paragraph, may be
seen to only neglect all mutual informations of the form Iω(pω) for ω ∈ P(Ω) not contained in any
α ∈ X. Intuitively, sΩ is expected6 to be small when large enough regions are taken in X to cover Ω,
by extensivity of entropy.

The approximate entropy ŠΩ(pΩ) only depends on the marginal distributions (pα)α∈X of pΩ, so
that ŠΩ factors through the canonical map ∆Ω → Γ(X). We call Bethe entropy the functional Š
defined on ∆0(X) by:

Š =
∑
α∈X

sα =
∑
β∈X

cβ · Sβ (4.49)

Each term sα acting on ∆α, so that the restriction of Š to the image of ∆Ω in ∆0(X) coincides with
ŠΩ. Only the restriction of Bethe entropy to Γ(X) shall be relevant, it is however important to remark
that Γ(X) is in general larger than the image of ∆Ω.

6Schlijper proved this procedure to converge to the true entropy per lattice point for the Ising 2D model in [26]
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4.3 Variational Principles

Thermodynamics characterise the equilibrium state of a system through variational principles ex-
pressed in terms of macroscopic variables such as pressure, volume, temperature, etc. The statistical
counterparts of such variational principles lead to a variety of functionals, expressed in terms of the
hamiltonian HΩ and the statistical state pΩ of the system, while macroscopic variables such as pressure
and temperature arise as Lagrange multipliers associated to volume and energy constraints.

In this section, we suppose given the hamiltonian HΩ =
∑
α hα as a sum of interactions over X.

We briefly recall two classical variational principles characterising the Gibbs equilibrium state pΩ. The
first one maximises entropy under a mean energy constraint, while the second one second performs
a Legendre transform to free energy. The latter we shall locally approximate by Kikuchi’s cluster
variation method, before giving the announced homological characterisation 4.22 of its solutions. This
result will justify the use of message-passing algorithms in the next chapter, which iterate over heat
fluxes corresponding to Lagrange multipliers for the consistency constraints.

4.3.1 Maximal Entropy

The simplest variational principle characterising the Gibbs distribution states that once the internal
or mean energy UΩ of the system is fixed, equilibrium is reached at the maximally entropic probability
density. Internal energy is the smooth functional UΩ : ∆Ω → R giving the expectation value of the
hamiltonian:

UΩ(qΩ) = 〈 qΩ |HΩ 〉 = EpΩ [HΩ] (4.50)
Let us denote by λ∞ = inf(HΩ) the minimal energy and by λ0 = UΩ([1]) the mean energy for the
uniform distribution on EΩ.

Theorem 4.19 (Maximal Entropy Principle). Given λ ∈ ]λ∞, λ0[ the constrained variational problem:

SΩ(pΩ) = max{
UΩ=λ

}SΩ (4.51)

has a unique solution given by pΩ =
[

e−θHΩ
]
for some inverse temperature θ ∈ R∗+.

Proof. The cotangent space of ∆̊Ω ⊆ A∗Ω is isomorphic to the quotient of AΩ by additive constants, gen-
erating the normalisation constraint 〈 pΩ | 1 〉 = 1. The inverse temperature then arises as a Lagrange
multiplier for the energy constraint UΩ = λ, as for every positive pΩ ∈ ∆̊Ω:

∂SΩ

∂pΩ
= θ · ∂UΩ

∂pΩ
mod R ⇔ − ln(pΩ) = θHΩ mod R (4.52)

Reciprocally, consider the smooth path θ 7→ [e−θHΩ ] described by the Gibbs states in ∆̊Ω for θ ∈]0,+∞[.
When the temperature goes to zero and θ →∞ the Gibbs distribution goes to the uniform distribution
on the minimisers of HΩ and UΩ → λ∞. When the temperature goes to infinity and θ → 0, the Gibbs
distribution goes to the uniform measure and UΩ → λ0.

Gibbs states as a function of a generalised inverse temperature θ ∈ R are one-parameter subgroups
of ∆̊Ω for its multiplicative structure, while θ ∈ R+ restricts to semi-groups, as pictured by the figure
below.

At the macroscopic level, the form of the maximal entropy principle suggests that the equilibrium
entropy S(U) be naturally defined as a function of internal energy U, while the temperature T measures
a kind of inverse entropic susceptibility:

1
kT

= θ = ∂S

∂U
(4.53)
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The Legendre transform essentially consists in a change of variables, defining an equivalent functional
parametrised by the derivative of the original one. We would here recover the so-called free entropy7:

Ψ(θ) = S(U)− θU (4.54)

The equilibrium free energy recovered as F (θ) = −Ψ(θ)/θ being more commonly used. It is remarkable
that the statistical free energy FΩ(HΩ) may be defined from the Shannon entropy SΩ(pΩ) in a perfectly
similar manner.

4.3.2 Thermal Equilibrium

Free energy variational principles describe a system interacting with a thermostat, exchanging ar-
bitrary amounts of energy without modifying the temperature of the latter. Such variational principles
are very natural as they for instance describe interaction with the atmosphere. Let us call variational
free energy the smooth bifunctional FΩ : ∆Ω ×HΩ → R given by:

FΩ(pΩ, HΩ) = 〈 pΩ |HΩ 〉 − SΩ(pΩ) (4.55)

This functional generates the Legendre transform of SΩ by minimisation of FΩ(− , HΩ) and does yield
the equilibrium free energy FΩ at inverse temperature8 θ = 1.

Theorem 4.20 (Minimal Free Energy Principle). For every HΩ ∈ AΩ, the variational problem:

FΩ(pΩ, HΩ) = min
∆Ω
FΩ(− , HΩ) (4.56)

has a unique solution given by the Gibbs state [e−HΩ ] reaching the equilibrium free energy FΩ(HΩ).

Proof. Describing the cotangent space of ∆̊Ω by the quotient AΩ/R, a critical pΩ ∈ ∆̊Ω satisfies:

∂FΩ

∂pΩ
= HΩ + ln(pΩ) = 0 mod R (4.57)

Reciprocally, concavity of entropy implies that pΩ = [e−HΩ ] indeed minimises FΩ(− , HΩ).

The theorem really states that free energy is the Legendre transform of Shannon entropy. Although
not bijective, the Legendre duality between hamiltonians and statistical states is fundamental:

pΩ = [e−HΩ ] ⇔ HΩ = − ln(pΩ) mod R (4.58)

and defines a surjective abelian group morphism AΩ → ∆̊Ω. The computability of HΩ however does
not at all imply that of pΩ, as normalising the Gibbs density would require to compute the equilibrium
free energy FΩ(HΩ), involving an integral over EΩ of exponential complexity in the cardinal of Ω.

4.3.3 Cluster Variation Method

Introduced by Kikuchi in [11], the cluster variation method seeks to approximate the marginals
(pα) ∈ Γ(X) of the global Gibbs state pΩ by a consistent collection of local probabilities9 (qα) ∈ Γ(X),
obtained through a variational principle on a local approximation of free energy.

7Free entropy is also called the Massieu potential, as introduced in his 1869 note [16].
8One may reintroduce temperature dependency by letting FθΩ(pΩ, HΩ) = θ−1FΩ(pΩ, θHΩ), recovering the classical

formula FθΩ = UΩ − θ−1SΩ. At fixed temperatures one may however always assume θ = 1 up to a choice of units.
9See 2.7 for the definition of Γ(X) ⊆ A∗0(X), space of consistent local probabilities.
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Definition 4.21. Bethe free energy is the smooth bifunctional F̌ : ∆0(X)×A0(X)→ R defined by:

F̌(p,H) =
∑
β∈X

cβ

(
〈 pβ |Hβ 〉 − Sβ(pβ)

)
(4.59)

Because of the Möbius numbers cβ appearing in its definition, the Bethe free energy F̌ is no longer
convex in general, and F̌(− , H) may have a great multiplicity10 of critical points inside the space
Γ̊(X) of consistent positive densities. We provide with a rigorous characterisation of the critical
points of F̌(− , H) constrained to Γ̊(X), by showing that they bear a homological relationship with
the reference hamiltonian field H.

Theorem 4.22. A positive and consistent statistical field p ∈ Γ̊(X) is critical for the constrained
Bethe free energy F̌(− , H)|Γ(X) if and only if there exists ϕ ∈ A1(X) such that:

− ln(p) ' H + ζ · δϕ mod R0(X) (4.60)

The proof of theorem 4.22 shall conclude this chapter, the flux term δϕ essentially appearing as
Lagrange multipliers associated to the consistency constraint dp = 0. The correspondence theorem
5.13 between stationary states of belief propagation and critical points of F̌ shall come as an easy
consequence of 4.22, once message-passing algorithms have been related with transport equations. A
crucial combinatorial argument in proving 4.22 is contained in the following proposition:

Proposition 4.23. For every H ∈ A0(X) and q ∈ A∗0(X) such that dq = 0 we have:

〈 q |µ ·H 〉 = 〈 q | cH 〉 (4.61)

In particular cH ∈ Im(δ) if and only if µ ·H ∈ Im(δ), or equivalently if H ∈ ζ · Im(δ).

Proof. Using qβ = Σβα(qα) and cβ =
∑
α→β µαβ we have:

〈 q |µ ·H 〉 =
∑
α→β

µαβ 〈Σβα(qα) |Hβ 〉 =
∑
β

cβ 〈 qβ |Hβ 〉 = 〈 q | cH 〉 (4.62)

In particular µ ·H ⊥ Ker(d)⇔ cH ⊥ Ker(d), while Im(δ) = Ker(d)⊥ as d is the adjoint of δ.

Homological invariance of F̌ with respect to interaction potentials also follows from 4.23. This
interesting property sheds light on the form of the Lagrange multipliers appearing in theorem 4.22

Proposition 4.24. For every consistent p ∈ Γ(X) and every U = H + ζ · δϕ in A0(X) we have:

F̌(p, U) = F̌(p,H) (4.63)

Proof. By orthogonality of Ker(d) with Im(δ) and using the lemma, the internal energy terms satisfy:

〈 p | cU 〉 = 〈 p |µ · U 〉 = 〈 p |µ ·H 〉+ 〈 p | δϕ 〉 = 〈 p | cH 〉 (4.64)

Recall that homologous interaction potentials u = h+ δϕ define the same global hamiltonian as h:

HΩ =
∑
α∈X

hα =
∑
β∈X

cβHβ (4.65)

and by 2.14, one furthermore has
∑
α uα = HΩ if and only if u is homologous to h. Hence a subtle

difference between the homological invariance of 4.24 and the following proposition lies in the assump-
tion that p ∈ Γ(X) is given by the marginals of a global probability distribution11 pΩ ∈ ∆Ω. In that
case, it is well-known that the Bethe approximation yields an exact measure of internal energy.

10For numerical studies see [33, 22, 12], A first mathematical proof of multiplicity is given by Bennequin in [4].
11The image of ∆Ω(X) in general forms a strict convex polytope of Γ(X). Its boundaries are the image of the

positivity constraints on the global density, see [32] and [1].
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Proposition 4.25. Given pΩ ∈ ∆Ω of image p in Γ(X), for any local hamiltonians Hα ∈ A0(X) of
global hamiltonian HΩ ∈ AΩ we have:

F̌(p,H) = 〈 pΩ |HΩ 〉 − Š(p) (4.66)

Proof. When pβ = ΣβΩ(pΩ) for every β ∈ X, by definition of F̌ and HΩ we have:

F̌(p,H) =
∑
β∈X

〈 pΩ | cβHβ 〉 − Š(p) = 〈 pΩ |HΩ 〉 − Š(p) (4.67)

The Bethe approximation also counts degrees of freedom properly, as measured by the maximum
entropy reaches in the high temperature limit. The following proposition further justifies its soundness,
it is proved in a slightly different form in [34].

Proposition 4.26. When X is a ∩-closed covering12 of Ω, the high temperature limit F̌([1], H) of the
Bethe free energy coincides with that of the true free energy F([1Ω], HΩ) = 〈HΩ〉 − ln |EΩ|.

Proof. According to 4.25, we only need to show that Š([1]) = ln |EΩ| =
∑
i ln |Ei|. The assumption on

X implies that for every i ∈ Ω, there exists a minimal βi ∈ X containing i so that:∑
α∈X

cα ln |Eα| =
∑
α∈X

cα
∑
i∈α

ln |Ei| =
∑
i∈Ω

ln |Ei|
∑
α⊇βi

cα =
∑
i∈Ω

ln |Ei| (4.68)

Before proceeding to the proof of theorem 4.22, we finally introduce the slightly finer characteri-
sation of critical points of F̌ given by 4.28. It will be especially useful in proving the correspondence
theorem 5.13 in the next chapter.

Definition 4.27. Denote by δ′ the truncation of the boundary δ to X r {∅}:

δ′αϕ = δαϕ if α 6= ∅ and δ′∅ϕ = 0 (4.69)

Theorem 4.28. Assuming H∅ = 0, a consistent statistical state p ∈ Γ̊(X) is critical for the constrained
Bethe free energy F̌(− , H)|Γ(X) if and only if there exists ϕ ∈ A1(X) such that:

− ln(p) = H + ζ · δ′ϕ (4.70)

Proof of theorem 4.22. To account for the normalisation constraints 〈 pα | 1 〉 = 1, we may describe the
cotangent space at p of ∆̊0(X) ⊆ A∗0(X) as the quotient A0(X)/R0(X) and write:

∂F̌
∂p
'
∑
β∈X

cβ
(
Hβ + ln(pβ)

)
mod R0(X) (4.71)

The flux term comes as a collection of Lagrange multipliers for the consistency constraints, a consistent
p ∈ Γ̊(X) being critical if and only if the differential of F̌(− , H) vanishes on Ker(d) = Im(δ)⊥ or:

c
(
H + ln(p)

)
∈ Im(δ) + R0(X) (4.72)

Proposition 4.23 is crucial13 to state that the above is equivalent to:

H + ln(p) ∈ ζ · Im(δ) + R0(X) (4.73)

12The ∩-closure of X is in fact equivalent to the «region-graph» condition of [34]. Note that X was assumed closed
under ∩ since section 2.3, as this property was necessary for the interaction decomposition to hold.

13As noticed by D. Bennequin, the original proof given in [34] is problematic when there exists β such that cβ = 0.
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Proof of theorem 4.28. First note that ζ · δ′ϕ ' ζ · δϕ mod R0(X), so that we only need to reduce the
Lagrange multipliers of 4.22 to the form given by 4.28. Assume there exists ψ ∈ A1(X) and λ ∈ R0(X)
such that:

− ln(p) = H + ζ · δψ + λ (4.74)

Define ϕ ∈ A1(X) by letting ϕαβ = ψαβ for non-empty β, and otherwise letting:

ϕα∅ = ψα∅ −
∑
α⊇β

µαβ λβ (4.75)

Then ζ(δϕ)α = ζ(δψ)α + λα for all non-empty α, while − ln(p∅) = 0.
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Chapter 5

Message-passing and Diffusion

In this chapter, we consider dynamics over the space of statistical fields that enlarge a class of
bayesian inference algorithms known asmessage-passing algorithms. The generalised belief propagation
algorithm introduced by Yedidia, Freeman and Weiss in [35] is the most interesting of these processes
and reviewed in section 1. For a general study of belief propagation on networks and their relations
to statistical physics, see [23].

The main contribution of this thesis is to reveal the homological character of message-passing
algorithms. Among the deep consequences of this new view stands a collection of conservation laws.
Section 2 shows how, at the level of energies, their discrete dynamics approximate a continuous-time
transport equation of the form u̇ = δΦ(u). Recovering belief propagation through a naïve Euler scheme
of time step 1, the present approach yields new algorithms at smaller time scales. Shorter time steps
seem highly advisable to avoid unstable behaviour.

Finally, building on the higher degree combinatorics of chapter 3, we propose a combinatorial
enhancement of the algorithm and its continuous version, through a degree-one Möbius inversion on
the energy flux. We show in section 3 how this canonical diffusion eliminates redundancies and natively
allows to enforce Dirichlet boundary conditions, a fundamental component of learning.
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5.1 Belief Propagation

Belief propagation was first introduced as a decoding algorithm by Gallager in his 1960 PhD thesis
on low-density parity-check codes [8]. In his setting, a collection of code bits and parity-check bits,
transmitted through a noisy communication channel, exchange messages to update the belief on their
true value until parity-check consistency is achieved. The algorithm was later rediscovered by Pearl in
1982 [24] to perform exact inference on bayesian trees, then generalised by Yedidia et al. in 2001 [35]
on more general coverings X ⊆ P(Ω).

This introductory section first defines the algorithm in its general form, before reviewing some of
its remarkable properties, a starting point of this work having been the theorem of [34] establishing a
correspondence between fixed points of the algorithm and critical points of a Bethe free energy.

5.1.1 Algorithm

Given X ⊆ P(Ω), generalised belief propagation assumes priors are described by a collection (fα)
of strictly positive observables indexed by α ∈ X. The dynamic takes place on a set of messages (mαβ)
according to the update rule:

mαβ ← mαβ · Σβα


∏

β′∈ΛαrΛβ
fβ′ ×

∏
α′β′∈dΛαrdΛβ

mα′β′∏
β′γ′∈dΛβrdΛα

mβ′γ′

 (5.1)

where Λα ⊆ X still stands for the cone of subregions of α and dΛα for its coboundary1. Denoting by
Gα ⊆ Aα the multiplicative group of strictly positive observables for every α ∈ X, the algorithm thus
iterates over m ∈ G1(X) given f ∈ G0(X). This crude yet classical formula justifies the alternative
name of sum-product algorithm.

Priors and messages serve to define a collection of beliefs (qα) according to the formula:

qα =
[ ∏
β′∈Λα

fβ′ ×
∏

α′β′∈dΛα
mα′β′

]
(5.2)

the normalisation bracket projecting Gα onto the subspace ∆̊α of non-vanishing probability densities.
The dynamic of the beliefs is bound to that of the messages, now following the much nicer update rule:

mαβ ← mαβ ·
Σβα(qα)
qβ

(5.3)

Stationary states of the algorithm hence correspond to consistent2 beliefs (qα) searched within a
particular subspace defined by the priors (fα). We shall relate this subspace to a homology class of
A0(X) in section 2. Another result not yet stated to our knowledge, is that stationarity of beliefs
implies stationarity of messages. This will justify to focus on the dynamic over q ∈ ∆̊0(X) following
the update rule:

qα ←

[
qα ×

∏
α′β′∈dΛα

Σβ′α′(qα′)
qβ′

]
(5.4)

We will denote by BP : ∆̊0(X)→ ∆̊0(X) the associated smooth map, the algorithm reading q ← BP(q).
It will only be a matter of preference whether to keep track of the messages m ∈ G1(X) over time, the
relevance of the final messages being questionable as the assignment (f,m) 7→ q is not injective.

1dΛα is the set of ordered pairs α′ ⊇ β′ such that α′ 6∈ Λα and β′ ∈ Λα (see 3.2.3). Our formula stays as close as
possible as that of [34] but we already write the products over set differences of cone coboundaries.

2The beliefs (qα) are consistent when qβ is the marginal of qα whenever β is contained in α.
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5.1.2 Properties

Belief propagation was initially considered on graphs, which we describe by coverings X ⊆ P(Ω)
containing the vertex {i} for all i ∈ Ω, and otherwise consisting only of edges of the form α = {i, j}.
In general, the underlying graph of Gallager’s algorithm contains loops, but Pearl’s algorithm, de-
scribing hierarchical data structures, was however restricted to acyclic graphs. Retractable hypergraphs
X ⊆ P(Ω) shall be defined in 6.3 to generalise the acyclic property of trees, the following theorem will
then extend Pearl’s result. On such retractable systems, the fundamental property justifying interest
in belief propagation is the exact, finite-time and parallelised algorithms it provides to compute the
probabilistic model’s marginals.

Theorem 5.1. Assume X ⊆ P(Ω) is retractable3. Given positive priors (fα) and initial messages
(mαβ), the beliefs (qα) iterated through BP converge to the exact marginals of the Markov field:

pΩ =
[ ∏
α∈X

fα

]
(5.5)

Moreover, convergence is reached in finite time less or equal to the diameter of X.

When X is a graph with loops, in general when X is an unretractable hypergraph, belief propa-
gation still performs approximate bayesian inference surprisingly well. The following theorem of [34]
beautifully bridges bayesian learning with statistical physics and greatly motivated the present work.
It expresses that stationary states of belief propagation actually compute the critical points of a Bethe
free energy approximation, which according to Kikuchi’s cluster variation method, should give a good
estimate of the marginals of the Markov field pΩ = [e−HΩ ].

Theorem 5.2. For any X ⊆ P(Ω), the fixed points of BP with priors (fα) are in one-to-one corre-
spondence with the critical points of F̌H with respect to the local hamiltonians:

Hα =
∑
β′∈Λα

− ln fβ′ (5.6)

It was recognised by D. Bennequin that the proof given by Yedidia et al. is problematic when there
exists α ∈ X such that the Möbius number cα vanishes, and we shall correct their proof in section 2.

In the general setting, the uniqueness of equilibria is not maintained. Although convergence of the
algorithm remains an open question, the existence of at least one fixed point is insured.

Theorem 5.3. For any X ⊆ P(Ω) and set of priors, there exists a fixed point of BP.

Proof. The topology of ∆0(X) is that of a product of spheres and the proof given in [4] relies on
Brouwer’s fixed point theorem, after having shown that BP : ∆̊0(X) → ∆̊0(X) keeps away from the
boundary of ∆0(X).

3See definition 6.3.
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5.2 Statistical Diffusions

We now introduce an ordinary differential equation of the form u̇ = δΦ(u) on interaction potentials.
This transport equation is very reminiscent of the heat equation and similar diffusions4. Trying to
understand the geometric nature of message-passing formulas and unveiling their connections with
algebraic topology was the first motivation of this thesis: we relate belief propagation to a coarse
integrator of this diffusion flow.

This homological picture completes the correspondence between the stationary states of belief
propagation and the critical points of Bethe free energy F̌(− , H), as described by theorem 4.22. Both
lie at the intersection of a homology class of interaction potentials5 with the space of consistent beliefs,
through the non-linear correspondence summarised in table 5.1:

[e−U ] ∈ Γ̊(X) and U ∈ H + ζ · Im(δ) (5.7)

Behind this correspondence is an interesting form of duality, exchanging constraints with degrees of
freedom. The free energy variational problem looks for constrained q ∈ Γ̊(X) such that variations are
generated by Lagrange multipliers, while the algorithm iterates over ϕ ∈ A1(X) until beliefs eventually
reach a consistent equilibrium state.

interaction potentials u = h+ δϕ

local hamiltonians U = ζ · u

beliefs q =
[

e−U
]

Table 5.1: Interaction potentials, local hamiltonians, and local Gibbs states – or beliefs.

Decomposing the dynamic into elementary operations, the vector field we introduce is of the form
T = δ ◦ (−D) ◦ ζ on the vector space A0(X) of interaction potentials:

A0(X) A0(X)

A1(X)

ζ

−D
δ (5.8)

The definition of the non-linear map D is the object of the first subsection. Preparing for the study
of other flux functionals, we then characterise a family of transport equations of the form u̇ = δΦ(u)
sharing the common property of yielding critical points of Bethe free energy at equilibrium. Specialising
to the case where Φ = −D ◦ ζ, we show how explicit Euler schemes on A0(X) generalise the discrete
dynamic of BP on ∆̊0(X) to arbitrary time scales.

4Apart from the non-linearity of the algorithm, the main difference lies in the central role of the zeta transform
defining local hamiltonians from interaction potentials. See section 6.3.

5Technically U ∈ H + ζ · Im(δ) should be understood up to additive constants. We shall discuss how to best deal
with normalisation constraints later on.
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5.2.1 Effective Energy Gradient and Consistency

The effective energy gradient D ∈ C∞
(
A0(X), A1(X)

)
will be essential in defining the currents

carrying energy from one region to another. Cancellation of these currents will then define equilibrium
as a collection of effective hamiltonians U ∈ A0(X) whose effective energies are consistent with one
another.

Definition 5.4. We call effective energy gradient the smooth map D : A0(X)→ A1(X) defined by:

D(H)αβ = Hβ − Fβα(Hα) (5.9)

where Fβα(Hα) = − ln Σβα(e−Hα) is the effective energy as defined in 4.1.2.

The zero locus of D is naturally diffeomorphic to the space of consistent positive measures by 4.9.
There will be two different ways to account for the normalisation constraints.

Definition 5.5. We say that a collection of local hamiltonians U ∈ A0(X) is:

− consistent if D(U) = 0,
− projectively consistent if D(U) ∈ R1(X).

We denote by C(X) ⊆ C′(X) the spaces of consistent and projectively consistent local hamiltonians.

Note for instance that 0 ∈ A0(X) is only projectively consistent as:

D(0)αβ = ln |Eβ | − ln |Eα| (5.10)

There is however a unique consistent U = ln |E| ∈ R0(X) such that U∅ = 0, accounting for the entropic
contributions in the high temperature limit.

Proposition 5.6. Consistent probability densities may be parametrised by local hamiltonians via:

(i) C′(X) is the inverse image of Γ̊(X) under U 7→ [e−U ] and:

Γ̊(X) ' C′(X)/R0(X) (5.11)

(ii) {U ∈ C(X) | U∅ = λ} is diffeomorphic to Γ̊(X) under U 7→ e−(U−λ) for all λ ∈ R and:

Γ̊(X) ' C(X)/R (5.12)

Proof. (i) Letting p = [e−U ], for all α ⊇ β one has pβ = Σβα(pα) if and only if Uβ = Fβα(Uα) mod R.
As [e−U ] = [e−U ′ ] if and only if U ′ ∈ U +R0(X), the quotient C′(X)/R0(X) is diffeomorphic to Γ̊(X).
(ii) D(U) = 0 implies consistency and Σ∅α(e−Uα) = e−U∅ = e−λ holds a single normalisation factor.
Reciprocally when p ∈ Γ̊(X), letting U = − ln(p)+λ we have D(U) = 0 with U∅ = − ln(1)+λ = λ.

The manifold of consistent local hamiltonians C(X) has a natural riemannian structure. Given any
consistent positive p ∈ Γ̊(X), consider the inner product on A0(X) defined by:

〈 f | g 〉p =
∑
α∈X

Epα [fα · gα] (5.13)

As C′(X) is mapped onto Γ̊(X), a metric of the form (5.13) is naturally associated to any U ∈ C′(X).
The tangent space TUC(X) is moreover described by the cohomology of a differential ∇, adjoint of δ
for the metric induced by [e−U ], a characterisation which will be particularly useful in section 6.3.
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Definition 5.7. We denote6 by ∇ = D∗ the linearised effective energy gradient:

∇(H)αβ = Hβ − Eβα[Hα] (5.14)

viewed as the smooth map ∇ : C′(X)→ Hom
(
A0(X), A1(X)

)
, letting Eβα = dFβα as per 4.14.

With this notation, we have TC(X) = Ker(∇) as a subbundle of TA0(X) restricted above C(X).
As the following suggests, ∇ naturally extends to a differential acting on all degrees of A•(X).

Proposition 5.8. Given p = [e−H ] ∈ Γ(X), we have ∇ = δ∗ for the metric induced by p.

Proof. This is the consequence of the fact that the conditional expectation Eβα : Aα → Aβ is adjoint
to the canonical extension jαβ : Aβ → Aα for the metrics induced by pα and pβ :∑

Eβ

gβ · pβ · Eβα[fα] =
∑
Eα

jαβ(gβ) · pα · fα (5.15)

Standard computations7 then show that 〈∇f |ϕ 〉p = 〈 f | δϕ 〉p for all f ∈ A0(X) and ϕ ∈ A1(X).

Acting on local hamiltonians, the effective energy gradient D will be generally precomposed by ζ.
Writing the hamiltonian H = ζ · h as a sum of local interactions, one may think of D(H)αβ as the
effective contribution of Λα r Λβ to the energy of Λβ :

D(ζ · h)αβ = Fβα
( ∑
β′∈ΛαrΛβ

hβ′

)
(5.16)

To complete the picture on consistency, let us finally parametrise Γ̊(X) by interaction potentials.

Definition 5.9. We denote by:

− Z(X) = µ · C(X) the manifold of consistent interaction potentials,
− Z ′(X) = µ · C′(X) the manifold of projectively consistent interaction potentials.

Proposition 5.10. Consistent probability densities may be parametrised by interaction potentials via:

(i) Z ′(X) is the inverse image of Γ̊(X) under u 7→ [e−ζ·u] and:

Γ̊(X) ' Z ′(X)/R0(X) (5.17)

(ii) {u ∈ Z(X) | u∅ = λ} is diffeomorphic to Γ̊(X) under u 7→ eλ−ζ·u for all λ ∈ R and:

Γ̊(X) ' Z(X)/R (5.18)

Proof. This follows from 5.6 as ζ · R0(X) = R0(X), while for u = µ · U one has u∅ = U∅.

The origin 0̄ ∈ Z(X), associated to the uniform state p = [1], describes the high temperature limit
where all variables are independent. The following characterisation of T0̄Z(X) should be seen as a
consequence of this independency8.

6To avoid burdening notations, we will often leave the dependency of ∇ in p ∈ Γ̊(X) or U ∈ C′(X) implicit.
7The proof of δ = d∗ is then perfectly analogous to the case of scalar coefficients, see Kodaira [13] for instance.
8The conditional expectation Eβα is always adjoint to the inclusion jαβ for the metric induced by the probability

density, as orthogonal projection of Aα onto Aβ . The effect of interactions between β and β′ is however that Aβ is no
longer orthogonal to Aβ′ in Aα. Although one could define interaction subspaces as Zα = ∩β⊂α Ker(Eβα) they would
hence not satisfy Eβα(Zβ′ ) = {0}.
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Proposition 5.11. Letting 0̄ = µ · ln |E| ∈ Z(X), one has:

T0̄Z(X) = Z0(X) (5.19)

where Z0(X) ⊆ A0(X) is the image of the canonical interaction decomposition defined in 2.3.2.

Proof. This is equivalent to Ker(d) = ζ ′ · Z0(X) as proved in 2.15. Conditional expectations Eβα
w.r.t. uniform probabilities are proportional to the partial integrations Σβα w.r.t. counting measures
as Eβα = 1

|Eαrβ |Σ
βα. The volumic factors are what we need for jαβ to be a section of Eβα, meaning

Eβα ◦ jαβ = idAβ , and the combinatorial argument of 2.15 to hold.

5.2.2 Diffusions and Correspondence Theorems

Given a smooth flux functional Φ : A0(X)→ A1(X), we consider the transport equation:

u̇ = δΦ(u) (5.20)

Let us mention two main differences of the present approach with usual message-passing algorithms:
1. (5.20) is an ordinary differential equation, and u̇ = du

dt represents the derivative of u : R→ A0(X)
with respect to a continuous time variable9.

2. (5.20) is a dynamic on the vector space of interaction potentials. A dynamic is induced on the
multiplicative group of positive beliefs by letting q = [e−ζ·u] but we do not take the usual point
of view of a dynamic over messages.

Difference 1 consists in a significant improvement for the stability of such algorithms, belief propagation
being recovered through the unreasonably coarse finite difference approximation u̇(t) ' u(t+1)−u(t).
Difference 2 makes the homological character of message-passing more apparent. Note that a dynamic
on ϕ ∈ A1(X) may be recovered as ϕ̇ = Φ(h+ δϕ) for some initial interaction potentials h ∈ A0(X).

In this paragraph, we show the announced correspondence between stationary points of belief
propagation and critical points of Bethe free energy. Although this correspondence is made more
coherent by viewing belief propagation as a dynamic over beliefs rather than on messages, this approach
required us to prove that stationarity of beliefs implied stationarity of messages. This will come as a
consequence of the faithfulness of the flux functional Φ = −D ◦ ζ, given by proposition 5.17.

More generally, the following definitions help characterise the class of flux functionals admissible for
(5.20) to seek critical points of a Bethe free energy. Morally, consistency of Φ will imply that critical
points are stationary under u̇ = δΦ(u), while the stronger faithfulness property is necessary for the
converse to hold. The existence and design of an optimal flux functional satisfying these properties is
a natural question then to be raised.

Definition 5.12. A smooth flux functional Φ : A0(X)→ A1(X) will be said:
− consistent if u ∈ Z(X)⇒ Φ(u) = 0
− faithful if u ∈ Z(X)⇔ δΦ(u) = 0
− projectively faithful if u ∈ Z ′(X)⇔ δΦ(u) ∈ R0(X)
− locally faithful if the restriction of Φ to a neighbourhood of Z(X) is faithful.

Suppose now given reference interaction potentials h ∈ A0(X) such that h∅ = 0, and let H = ζ ·h.
The correspondence is essentially a rephrasing of theorem 4.28, characterising critical points of F̌(− , H),
all difficulties being kept hidden behind the faithfulness assumption. To account for normalisation10,
we still denote by δ′ the truncation of δ to X r {∅} as defined in 4.27.

9The possibility to differentiate w.r.t. continuous time was probably occluded by the common preference for the
multiplicative point of view of «beliefs». Ironically, there is absolutely no originality in the additive point of view of
«energies» as Gallagher’s electronic apparatus was already logarithmic – additions are simpler than multiplications for
humans and machines all the same.

10Although belief propagation has to normalise each step, scaling factors being otherwise unstable on graphs with
loops, first experiments suggest that this normalisation procedure might be superfluous for finer integrators of (5.20).
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Theorem 5.13. Assume Φ is faithful. Then for all u ∈ A0(X), the following are equivalent:

(i) There exists ϕ such that u = h+ δ′ϕ is stationary for u̇ = δ′Φ(u).
(ii) The beliefs e−ζ·u are critical for F̌(− , H) constrained to Γ̊(X).

Lemma 5.14. For all ϕ ∈ A1(X) if δ′ϕ = 0 then δϕ = 0.

Proof. From the global Gauss formula
∑
β δβϕ = 0, if δαϕ = 0 for all α 6= ∅ then δ∅ϕ = 0, see 2.3.

Proof of theorem 5.13. Recall that q ∈ Γ̊(X) is critical for F̌(− , H) constrained to Γ(X) if and only
if there exists Lagrange multipliers ϕ ∈ A1(X) such that − ln(q) = H + ζ · δ′ϕ by theorem 4.28.

− Assume q is critical and let ζ · u = − ln(q). Then there exists ϕ such that u = h + δ′ϕ while
D(ζ ·u) = 0 by consistency. We have δ′Φ(u) = δΦ(u) = 0 by faithfulness of Φ and u is stationary.

− Reciprocally, assume u = h + δ′ϕ is stationary. According to the lemma, δ′Φ(u) = 0 implies
δΦ(u) = 0 so that D(ζ · u) = 0 by faithfulness of Φ. Letting U = ζ · u, it follows that D(U) = 0
with U∅ = 0 hence q = e−U ∈ Γ̊(X) is consistent and critical for the constrained free energy.

Theorem 5.15. Assume Φ is projectively faithful. For all u ∈ A0(X), the following are equivalent:

(i) There exists ϕ such that u = h+ δ′ϕ is projectively stationary for u̇ = δ′Φ(u).
(ii) The beliefs [e−ζ·u] are critical for F̌(− , H) constrained to Γ̊(X).

Proof. blank

− If q = [e−ζ·u] ∈ Γ̊(X) is critical for F̌(−, H)|Γ(X), there exists ϕ such that u = h + δ′ϕ by 4.28.
Consistency of q implies u ∈ Z ′(X) by 5.10 and δΦ(u) ∈ R0(X) by projective faithfulness of Φ.

− Reciprocally, assume u = h+δ′ϕ is projectively stationary. As δΦ(u) ∈ R0(X) implies u ∈ Z ′(X)
by projective faithfulness, q = [e−ζ·u] is consistent and critical for the constrained free energy.

Let us now show that the flux functional inducing belief propagation is faithful. The algorithm
shall be recovered as a coarse integrator of the differential equation:

u̇ = δϕ where ϕ = −D(U)
U = ζ · u

(5.21)

Transport takes place at the level of effective interaction potentials u, an energy flux ϕ balancing
the effective hamiltonians U = ζ · u until they reach effective consistency. The evolution of u being
restricted to a single homology class, let us emphasise that total energy is conserved along any integral
curve of (5.21). Hence for any reference interaction potentials h homologous to u(0), one has:∑

α

uα(t) =
∑
α

hα (5.22)

This is a direct consequence of 2.9 and obviously holds along integral curves of (5.20) as well.

Definition 5.16. We call:

− standard diffusion flux the functional Φ : A0(X)→ A1(X) defined by Φ = −D ◦ ζ,
− standard diffusion the vector field T on A0(X) defined by T = δΦ.
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Proposition 5.17. The standard diffusion flux is faithful.

Proof. The proposition claims that δD(H) = 0 implies D(H) = 0 for any local hamiltonians H.
Denoting by d the adjoint of δ for the canonical metric of A0(X), we have for every v,H ∈ A0(X):

〈 v | δD(H) 〉 = 〈 d(v) |D(H) 〉 (5.23)

Assuming that δD(H) = 0 and letting v = e−H the above integration by parts formula gives:

〈 d(e−H) |D(H) 〉 =
∑

αβ∈N1(X)

〈
e−Hβ −Σβα(e−Hα)

∣∣∣Hβ + ln Σβα(e−Hα)
〉
Eβ

= 0 (5.24)

It then follows by monotonicity of y 7→ − ln(y) that the differences vβ − Σβα(vα) and Hβ − Fβα(Hα)
have opposite signs. As vβ = Σβα(vα) is equivalent to Hβ = Fβα(Hα), we do have D(H) = 0.

In the next paragraph, we shall enforce normalisation constraints through a Möbius inversion on
the flux of Φ outbound to ∅. We introduce the flux functional Φ′ defined by Φ′(u)αβ = Φ(u)αβ when
β 6= ∅ and otherwise by:

Φ′(u)α∅ =
∑
α→β′

µαβ · Φ(u)β∅ (5.25)

Let us show that Φ′ is projectively faithful.

Proposition 5.18. For every H ∈ A0(X) we have the equivalence:

δD(H) ∈ R0(X) ⇔ ∃λ ∈ R0(X) s.t. D(H − λ) = 0 (5.26)

Proof. Letting ∆ = δd denote the laplacian on R0(X), we have Im(∆) = Im(δ) + Im(d) by Hodge
decomposition. By additivity of effective energy along constants, one has D(H − λ) = D(H)− dλ for
all λ ∈ R0(X) so that:

δD(H − λ) = δD(H)−∆(λ) (5.27)

If δD(H) = λ′ ∈ R0(X), then λ′ ∈ Im(δ) ⊆ Im(∆) and there exists λ ∈ R0(X) such that ∆(λ) = λ′.
It follows that δD(H − λ) = 0. The faithfulness property 5.17 of D ◦ ζ then implies D(H − λ) = 0.

Proposition 5.19. The flux Φ′ defined by (5.25) is projectively faithful.

Proof. From proposition 5.18, projective stationarity δΦ(u) ' δΦ′(u) ' 0 mod R0(X) implies the
projective consistency of u as D(ζ · u) = D(λ) ∈ R1(X) for some λ ∈ R0(X).
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5.2.3 Euler Schemes and Belief Propagation

The ordinary differential equation (5.21) defines a continuous-time transport u̇ = δΦ(u) of energy
at the level of interaction potentials. Its flow may be approximated by common methods of numerical
integration, but belief propagation is related to the time-step-1 explicit Euler scheme u← u+ δΦ(u),
which approximates the flow of the vector field T = δΦ by:

enT ' (1 + T )n (5.28)

We warn against the use of such a coarse scheme11 as 1 may actually be met by the integrator’s
Lipschitz bound. A straightforward refinement is to reduce the time step to 0 < λ < 1, yielding
new and better-behaved belief propagation algorithms, while higher order integrators could also prove
useful.

Defining effective hamiltonians as U(t) = H + ζ · δϕ(t), it is the differential equation ϕ̇ = −D(U)
that is more precisely related to the multiplicative algorithm12 of equations (5.2) and (5.3). The crucial
ingredient in recovering (5.2) is the Gauss formula of proposition 2.3, which gives on every cone Λα:

Uα(t) = Hα +
∑

α′β′∈dΛα
ϕα′β′(t) (5.29)

Equation (5.29) is, up to additive constants, the logarithm of (5.2) defining beliefs from messages.
Approximating the evolution ϕ̇ = −D(U) by the finite difference iteration ϕ← ϕ− D(U) then yields:
the logarithm of the message update rule (5.3):

ϕαβ ← ϕαβ − ln
(

Σβα e−Uα
e−Uβ

)
(5.30)

Faithfulness of Φ = −D ◦ ζ justifies our choice to drop messages out of memory and focus on the
transport equation u̇ = δΦ(u) instead. Accounting for normalisation could be done by projecting the
evolution of u onto A0(X)/R0(X). As a different point of view, we show that splitting the flux Φ′
of (5.25) as Φ′ = Φ′int + Φ′out, where Φ′out gathers all the flux terms (Φ′α∅) directed to ∅, allows to
naturally enforce normalisation at each step. This only requires to replace δ by its truncation δ′ to
X r {∅}, as defined in 4.27, and prepares for the more general boundary conditions considered in the
next section.

Proposition 5.20. Under the correspondence q = e−ζ·u belief propagation is a splitting scheme for
the transport equation u̇ = δ′Φ′(u) associated to the decomposition Φ′ = Φ′int + Φ′out, each term being
integrated through an explicit Euler scheme of time step 1.

Proof. Consider the evolution U̇ = Xint(U) +Xout(U) induced on the effective hamiltonians U = ζ ·u,
where Xint(U) = ζ · δΦ′int(u) and Xout(U) = ζ · δ′Φ′out(u). Applying Gauss formulas on Λαr {∅}, one
may view Xint and Xout bound into and out of Λα r {∅} respectively.

Xint(U)α =
∑

α′β′∈dΛα
Φ′int(u)α′β′ with Φ′int(u)α′β′ = Fβ′α′(Uα′ − Uβ′)

Xout(U)α = −
∑
β′∈Λα∅

Φ′out(u)β′∅ with Φ′out(u)β′∅ =
∑
β′→γ′

µβ′γ′ Fγ
′
(Uγ′)

(5.31)

Möbius inversion formulas yield Xout(U)α = −Fα(Uα). Consider then the splitting scheme:

U(n+ 1) '
(
1 + Xout

)
◦
(
1 + Xint

)(
U(n)

)
(5.32)

The first step U ← U + Xint(U) is, up to constants the logarithm of the belief update rule (5.4). The
second step U ← U +Xout(U) corresponds to normalising13 the belief qα = [e−Uα ] = e−Uα+Fα(Uα).

11Consider for instance the real ODE ẏ = −ay and the behaviour of e−anτ ' (1− aτ)n for different values of aτ .
12Letting U = − ln(q) and ϕ = − ln(m). Reference hamiltonians are related to priors by H = ζ · h with h = − ln(f).
13The total outbound flux δ∅Φ′out =

∑
α
cα Fα(Uα) is a Bethe approximation of the total free energy FΩ(UΩ).
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Approximating the flow of T by enT ' (1 + T )n may lead to serious convergence and stability
issues in regimes where the norm of T and its Lipschitz bound are not strictly smaller than 1. In
simple examples with cycles, T∗ may for instance presents periodic eigenvalues of the form ei2π/n.

A straightforward and recommendable improvement of BP is to reduce the time scale of the explicit
Euler scheme and approximate the flow by en·λT ' (1+λT )n. Iterating the non-linear operator (1+λT )
corresponds to updating messages according to:

mαβ ← mαβ ·
(

Σβα(qα)
qβ

)λ
(5.33)

It is to be expected that reasonably small values of λ around 0.5 may already change the algorithm’s
behaviour dramatically. In some regimes, belief propagation has been reported to converge poorly
after undergoing a kind of «phase transition». Changing the time scale may probably overcome this
limitation.

Definition 5.21. For every λ > 0, we call belief propagation of time scale λ the algorithm iterating
over a collection (qα) ∈ ∆̊0(X) of beliefs according to the update rule:

qα ←

[
qα ×

∏
α′β′∈dΛα

(
Σβ′α′(qα′)

qβ′

)λ ]
(5.34)

We denote by BPλ : ∆̊0(X)→ ∆̊0(X) the smooth map inducing the above dynamic.

The following identity is a straightforward consequence of the homological character of BP and
conservation of the total energy. It was already known in particular cases, but not stated as a general
fact to our knowledge.

Proposition 5.22 (Conservation). Let q ∈ ∆̊0(X)N denote a sequence of beliefs iterated from BPλ
for some λ > 0. Then the quantity:

qΩ(t) =
∏
α∈X

qα(t)cα (5.35)

remains constant in GΩ = (R∗+)EΩ up to a scaling factor.

5.3 Canonical Diffusion

As expressed by theorem 5.13, stationary states of any transport equation derived from a faithful
flux functional solve the problem of finding consistent pseudo-marginals critical for a Bethe free energy.
Therefore it remains a practical and theoretical open question whether Φ = −D ◦ ζ is optimal among
faithful fluxes, and if not whether a better-behaved flux may be designed. Completing diagram 5.8
with a Möbius inversion on degree one, we introduce a homological vector field τ = δφ associated to
the flux φ = µ ◦ (−D) ◦ ζ :

A0(X) A0(X)

A1(X) A1(X)

ζ

−Dδ

µ

(5.36)

The symmetry of diagram 5.36 is of great appeal. It involves conjugation of operators on A•(X)
by the extended transforms ζ and µ, which shall have interesting cohomological consequences on the
linearised dynamic. We claim that φ behaves better than the standard flux Φ for three main reasons:

(i) the flux bound into Λα is a Bethe approximation of the total effective energy of X r Λα.
(ii) the flux from Λα to a subcone Λβ is the effective energy of Λα r Λβ .
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(iii) the algorithm u← u+ δϕ(u) restricted to a cone Λα ⊆ X converges in one step.

The standard flux Φ brings redundancies and (i) expresses that effective contributions of neighbouring
regions are properly counted. In addition (ii) will allow for a natural enforcement of Dirichlet boundary
conditions, the outbound flux taking care of reaching consistency with the boundary. Such boundary
conditions, fixing the state of an exterior subset of variables, are a fundamental constituent of learning.

We prepare this section by introducing the differential calculus we shall use in presence of boundary,
which relies on a boundary operator δ̊ truncating δ to interior variables. Investigating some funda-
mental properties of the canonical flux, we then show that φ = µ◦ (−D)◦ ζ satisfies a local faithfulness
condition and prove proposition 5.32 supporting claims (i) and (ii) above, before going through some
of the algorithms that generalise belief propagation by approximate integration of u̇ = δφ(u).

5.3.1 Calculus with Boundary

In contrast with differential geometry, there is no intrinsic notion of boundary on X ⊆ P(Ω) and
deciding which variables belong to the boundary and which do not is either arbitrary or dictated by
experience14. Assuming ∂Ω ⊆ Ω describes a set of variables whose state is given by the exterior, the
following compatibility condition on X will define the boundary ∂X at the level of regions.

Definition 5.23 (Boundary). Given a subset of variables ∂Ω ⊆ Ω, let us denote by:
− ∂α = α ∩ ∂Ω the boundary of a region α ⊆ Ω,
− ∂X = {∂α | α ∈ X} the boundary of X ⊆ P(Ω).

We say that a covering X ⊆ P(Ω) is adapted to the boundary ∂Ω whenever ∂X ⊆ X.

As a consequence, the boundary ∂Λα of the cone Λα ⊆ X is the cone Λ∂α ⊆ ∂X for every α ∈ X.
In other words, every α has only one maximal subregion15 ∂α belonging to ∂X, with ∂α = ∅ when α
does not contain any exterior variable. We finally define α to be interior whenever it is not contained
in ∂X, equivalently, when α contains at least one variable of Ω r ∂Ω:

Definition 5.24. If X ⊆ P(Ω) is adapted to ∂Ω, we denote by X̊ = X r ∂X the interior of X.

To the splitting X = X̊t∂X, we associate the direct sum decomposition A0(X) = A0(X̊)⊕A0(∂X)
and write u = u|X̊ + u|∂X for every u ∈ A0(X). When enforcing Dirichlet boundary conditions, we
shall restrict the evolution of the interaction potentials u to the interior of X, their trace u|∂X on
the boundary describing input data or exterior stimuli. The evolution of u|X̊ shall bear a homological
character through the following definition. Although a general harmonic theory with boundary may
be developed on the whole complex A•(X), we solely focus on degrees zero and one for now.

Definition 5.25. We call interior divergence the map δ̊ : A1(X)→ A0(X̊) truncating δ to X̊, defined
by δ̊(ϕ) = δ(ϕ)|X̊ for every ϕ ∈ A1(X).

The following proposition is the analog of the integration by parts formula in differential geometry.
Given a submanifold V ⊆ R3 with boundary ∂V , one has for every scalar field u and vector field ~ϕ:∫

V

~grad(u) · ~ϕ dv = −
∫
V

udiv(~ϕ) dv +
∫
∂V

u (~ϕ · ~n) ds (5.37)

denoting by ~n the outbound unit normal vector on ∂V . The formal adjunction of ~grad with −div is
tweaked by a boundary term representing the integral of the outbound flux of ϕ against u.

14In practice, the set of fixed boundary variables of a neural network depends on the training or testing context.
15This contrasts with the topological setting, as one may for instance take the boundary of the 2-simplex to be the

triangle formed by its three edges. As there exists locally consistent pseudo-marginals on the triangle that do not have a
consistent global extension, such a notion of boundary would be problematic when trying to enforce globally inconsistent
Dirichlet boundary conditions.
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Proposition 5.26 (Integration by parts). Let ∇ denote the adjoint of δ for a given metric. Then for
every u ∈ A0(X) and every ϕ ∈ A1(X) we have:

〈∇u |ϕ 〉 = 〈u | δ̊ϕ 〉+ b(u, ϕ) (5.38)

where b(u, ϕ) = 〈u | 1∂X | δϕ 〉 denotes the scalar product of the restrictions of u and δϕ to ∂X.

Proof. In absence of boundary we have the classical integration by parts formula 〈∇u |ϕ 〉 = 〈u | δϕ 〉
expressing the adjunction of ∇ with δ. The above simply consists of introducing a splitting of 〈u | δϕ 〉
as 〈u | 1X̊ + 1∂X | δϕ 〉 in presence of a boundary. Note that the boundary term:

b(u, ϕ) =
∑
β∈∂X

〈
uβ

∣∣∣ ∑
α→β

ϕαβ −
∑
β→γ

ϕβγ

〉
(5.39)

does present a formal analogy with 5.37 despite the unusual «thickness» of the boundary ∂X. The
analogy becomes clearer if one assumes ∇u = 0 on ∂X as the above reduces to:

b(u, ϕ) =
∑
β∈∂X

〈
uβ

∣∣∣ ∑
α∈X̊

ϕαβ

〉
(5.40)

by duality of ∇ with δ on A•(∂X), and represents the integral of the outbound flux of ϕ against u.

As proposition 5.26 suggests, the differential calculus of δ̊ shall only differ from that of δ by the
appearance of boundary terms representing energy fluxes leaving X̊ through ∂X. It will be useful to
treate those seperately and we decompose A1(X) as the direct sum Aint1 (X)⊕Aout1 (X) according to:

Definition 5.27. For every ϕ ∈ A1(X), we introduce the splitting ϕ = ϕint + ϕout defined by:

− ϕintαβ = ϕαβ for every β ∈ X̊,

− ϕoutαβ = ϕαβ for every β ∈ ∂X.

We respectively call ϕint and ϕout the interior and outbound components of ϕ.

Note that δ : A1(X)→ A0(X) then takes a block-triangular form as illustrated by the diagram:

Aint1 (X) ⊕ Aout1 (X)

A0(X̊) ⊕ A0(∂X)

(5.41)

Full-line arrows represent the components of δ̊ while the dotted arrow represents the truncation δ− δ̊.
In particular, we have δ(ϕint) = δ̊(ϕint) while and the boundary term b(u, ϕ) = b(u, ϕout) of prop.
5.26 depends only on ϕout.

Proposition 5.28 (Gauss formula on Λα r ∂Λα). For every φ ∈ A1(X) we have:

ζ (̊δφ)α = ζ̃(φint)Ω→α − ζ(φout)α→∂α (5.42)

where ζ̃(φint)Ω→α =
∑

α′β′∈dΛα
φintα′β′ denotes the total flux bound from X̊ to the interior of Λα.

Proof. By definition of δ̊ and of the action of ζ on A0(X) we have:

ζ (̊δφ)α =
∑
β′∈Λα

δ̊β′φ =
∑

β′∈Λαr∂Λα
δβ′φ =

∑
β′∈Λα

∂α

( ∑
α′→β′

φα′β′ −
∑
β′→γ′

φβ′γ′
)

(5.43)
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Terms of the form φα′β′ with α′ ∈ Λα∂α cancel out the φβ′γ′ with γ′ ∈ Λα∂α so that we may write:

ζ (̊δφ)α =
∑
α′∈ΛΩ

α

∑
β′∈Λα

φintα′β′ −
∑

β′∈Λα
∂α

∑
γ′∈Λ∂α

φoutβ′γ′ (5.44)

Recognising zeta transforms on degree one, the outbound flux reads ζ(φout)α→∂α and the inbound flux
reads ζ̃(φint)Ω→α where φint is extended by zero to X̃ = {Ω} ∪X and ζ̃ acts on A1(X̃).

The zeta transforms in degree one appearing in proposition 5.28 retrospectively provide with a
strong motivation for the higher degree combinatorics of chapter 3. They will also justify performing
a Möbius inversion on the standard flux functional Φ = −D ◦ ζ.

5.3.2 Canonical Flux

We now introduce the homological vector field τ = δφ which we claim to define a canonical diffusion
on interaction potentials. Because the evolution of effective hamiltonians U = ζ ·u integrates the energy
flux on cones, Gauss formulas applied φ = µ ·Φ will shed light on the necessity of performing a Möbius
inversion in degree one on the standard diffusion flux16.

Definition 5.29. We call:
− canonical diffusion flux the smooth functional φ = µ ◦ (−D) ◦ ζ defined from A0(X) to A1(X),
− canonical diffusion the smooth vector field τ = δφ defined on A0(X).

We shall write φ = −Dµ to emphasise on the conjugation of −D by the Möbius transform. More
generally, the following notations will be useful in switching from one point of view to the other.

Definition 5.30. For every smooth map T : A•(X)→ A•(X) we denote by:
− T ζ = ζ ◦ T ◦ µ the ζ-conjugate of T ,
− Tµ = µ ◦ T ◦ ζ the µ-conjugate of T .

The extensions of ζ and µ to all degrees really allow for two equivalent point of views on A•(X), of
which the associated conjugations seem to be an essential feature. Hence the two equivalent differential
equations for the canonical diffusion τ on interaction potentials and its conjugate vector field τ ζ

inducing the evolution of effective hamiltonians: u̇ = δφ

φ = −Dµ(u)
⇔

 U̇ = δζ(Φ)

Φ = −D(U)
(5.45)

The following theorem best illustrates a first effect of Möbius inversion on the effective energy flux.
This correction is necessary for the total flux bound into Λα to correctly approximate the global
effective energy of Ω r Λα. Theorem 5.31 also implies one-step convergence to local hamiltonians
of U ← U − δζD(U) whenever the underlying hypergraph contains a maximal cell17. algorithm
u← u− δDµ(u) restricted to A0(Λα) below any cell α ∈ X.

Theorem 5.31. The evolution of effective hamiltonians under U̇ = −δζD(U) reads:

U̇α = F̌Ω(U | α)− Uα (5.46)

where F̌Ω(U | α) =
∑
ω cω Fω(Uω | ω∩α) denotes the Bethe approximation of FΩ(UΩ | α) when X does

not contain Ω, and is equal to the latter otherwise.

Substituting the expression of the effective energy gradient D(U) for Φ, the theorem will come as
a direct consequence of:

16We believe this combinatorial correction to be a significant improvement of the GBP algorithm of [34], however for
the standard BP algorithm on graphs, one has φ = µ · Φ = Φ mod R1(X) and the correction is useless.

17X may for instance contain Ω, but the more practical consequence holds for restrictions of the algorithm to cones
Λα ⊆ X, for instance when updating units asynchronously and independently of one another, see section 6.1.
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Proposition 5.32. If X ⊆ P(Ω) does not contain Ω, then for every Φ ∈ A1(X) we have:

δζ(Φ)α = Φ̌Ω→α (5.47)

where Φ̌Ω→α =
∑
ω 6∈Λα

cω Φω→α∩ω denotes the Bethe approximation of an expected flux ΦΩ→α.

Proof. Letting φ = µ ·Φ we have δζ(Φ) = ζ(δφ). Using notations of prop. 5.28, in absence of boundary
the Gauss formula on Λα reads, following (3.55):

δζ(Φ)α = ζ̃(µ · Φ)Ω→α (5.48)

Consider the Möbius transform φ̃ = µ̃ · Φ of the natural extension of Φ to X̃ = {Ω} t X by zero.
Locality of µ̃ implies that φ̃ and φ coincide on X and only differ on terms of the form Ω→ β where φ
vanishes. By Möbius inversion on X̃ we have ζ̃(φ̃)Ω→α = ΦΩ→α = 0 so that:

ζ̃(φ)Ω→α = −ζ̃
(
φ̃− φ

)
Ω→α = −ζ

(
iΩ(φ̃)

)
α

(5.49)

From the inductive construction of µ given by proposition 3.10 we have iΩ(φ̃) = µ
(
ν̃Ω(Φ)

)
which is

equivalent to ζ
(
iΩ(φ̃)

)
= ν̃Ω(Φ) by Möbius inversion on A0(X). Substituting the identity cβ = −µ̃Ωβ

given by proposition 3.3 into equation 3.41 defining ν̃Ω, we finally get:

− ν̃Ω(Φ)α = −
∑
β∈ΛΩ

α

µ̃Ωα Φβ∩(Ω→α) =
∑
β 6∈Λα

cβ Φβ→β∩α = Φ̌Ω→α (5.50)

which gives the desired expression for ζ̃(φ)Ω→α = ζ̃(µ · Φ)Ω→α.

Note that if Ω ∈ X, Möbius inversion in A1(X) would have simply given δζ(Φ)α = ΦΩ→α.

Another reason for performing Möbius inversion on the energy flux comes with the enforcement of
Dirichlet boundary conditions on A0(∂X). The outbound flux from Λα to its boundary ∂Λα = Λ∂α
now coincides with the effective energy of Λα r ∂Λα, as expressed by the following theorem. Its effect
will be to ensure consistency of U ∈ A0(X) with the prescribed values on ∂X.

Theorem 5.33. The evolution of effective hamiltonians under U̇ = −δ̊ζD(U) reads:

U̇α =
∑

ω∩α6∈∂X

cω FΩ(Uω − Uω∩α ∣∣ω ∩ α) − Fα
(
Uα − U∂α

∣∣ ∂ α) (5.51)

The following counterpart of the Gauss formula on Λα r ∂Λα will again prove the theorem. It
comes as an easy consequence of prop. 5.32 and the lemma below.

Proposition 5.34. If X does not have a maximal element, then for every Φ ∈ A1(X) we have:

δ̊ζ(Φ)α = Φ̌intΩ→α − Φoutα→∂α (5.52)

where Φ̌intΩ→α =
∑
ω 6∈Λα

cω Φintω→α∩ω denotes the Bethe approximation of an expected flux ΦintΩ→α.

Lemma 5.35. For every φ = µ · Φ ∈ A1(X), we have φout = µ · Φout and φint = µ · Φint.

Proof of proposition 5.34. Letting φ = µ · Φ, in accordance with lemma 5.35 the Gauss formula with
boundary 5.28 gives the following expression for ζ (̊δφ)α = δ̊ζ(Φ)α:

ζ̃(φint)Ω→α − ζ(φout)α→∂α = ζ̃(µ · Φint)Ω→α − ζ(µ · Φout)α→∂α (5.53)

The outbound flux reads Φoutα→∂α by Möbius inversion on A1(X), while it follows from proposition 5.32
applied to δζ(Φint)α that the inbound flux is the Bethe approximation Φ̌intΩ→α.
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Proof of lemma 5.35. For all α ∈ X and β ∈ ∂X, we have by definition of the action of µ on A1(X):

φoutαβ =
∑
β′∈Λβ

µββ′
∑

α′∈Λα
β′

µαα′ · Φα′→α′∩β′ =
(
µ · Φout

)
αβ

(5.54)

as β ∈ ∂X implies α′ ∩ β′ ∈ ∂X for all β′ ⊆ β and φout only depends on Φout. We may then conclude
from φout = µ ·Φout that φint = φ− φout coincides with µ ·Φint = µ · (Φ−Φout) by linearity of µ.

Note that the properness of φ follows from that of Φ by invertibility of µ, however we were only able
to prove a local faithfulness property and the global faithfulness of φ will remain an open question.

Definition 5.36. A flux functional φ : A0(X)→ A1(X) will be said locally faithful if there exists an
open neighbourhood V of {D ◦ ζ = 0} ⊆ A0(X) such that for all u ∈ V:

δφ(u) = 0 ⇔ D(ζ · u) = 0 (5.55)

Proposition 5.37. The flux functional φ = µ ◦ (−D) ◦ ζ is locally faithful.

Proof. Let u ∈ A0(X) such that D(ζ ·u) = 0 denote a field of consistent interaction potentials. Writing
Φ = −D ◦ ζ as before, for every V = ζ · v ∈ A0(X) we have according to propositions 5.32 and 4.14:

ζ
(
δφ(u+ v)

)
α

= Φ̌(u+ v)Ω→α =
∑
ω/∈Λα

cω Eω
[
Vω − Vω∩α

∣∣ω ∩ α ]+ o (v) (5.56)

where conditional expectations are taken for the consistent statistical field p = [e−U ] with U = ζ · u.
Now note that although p ∈ Γ̊(X) may not derive from a global probability density pΩ ∈ ∆Ω, there
does exist a global density qΩ ∈ A∗Ω such that pα = ΣαΩ(qΩ) for all α ∈ X by acyclicity of A∗•(X). We
may thus define global «conditional expectation» maps by letting for all ω → β in X:

EΩ[Vω | β ] = ΣβΩ(qΩ · Vω)
pβ

(5.57)

such that EΩ[Vω | β ] coincides with Eω[Vω | β ] as a consequence of ΣωΩ(qΩ) = pω. Observing that
Vω∩α = ζ(v|Λα)ω and letting VΩ = ζ̃(v)Ω, the linearised right hand side of 5.56 now reads:

EΩ
[ ∑
ω∈X

cω
(
Vω − Vω∩α

) ∣∣∣ α ] = EΩ[VΩ − Vα
∣∣α ] (5.58)

Up to second order terms in v, we hence have δφ(u + v) ' 0 if and only if Vα ' EΩ[VΩ |α] for all α,
which implies Vβ ' Eα[Vα |β] for all α→ β. Hence δφ satisfies the linearised faithfulness condition:

δφ(u+ v) ' 0 ⇔ D(U + V ) ' 0 (5.59)

and the tangent spaces of {δφ = 0} and {D ◦ ζ = 0} at u coincide. If one could show {δφ = 0} to be
connected, the global faithfulness of φ would follow.
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Chapter 6

Geometry of Equilibria

In this chapter, we study the influence of the geometry of X ⊆ P(Ω) on the stationary points
of message-passing algorithms, as described by the intersection of the manifold Z(X) of consistent
interaction potentials with homology classes of the form [h] = h+ δA1(X).

Figure 6.1: A cuspidal singularity of the projection Z(X) → A0(X)/δA1(X).
Vertical lines represent classes of homologous potentials, some of which intersect
the stationary surface more than once.

We first extend a well-known uniqueness theorem on trees to a wider class of hypergraphs which
we call retractable. This constructive procedure moreover demonstrates the finite-time convergence of
a message-passing scheme on retractable hypergraphs.

We introduce a canonical map T : A0(X)/δA1(X)→ Z(X) sending any potential h ∈ A0(X) to the
true effective potential h∗ ∈ Z(X) one seeks to approximates, as induced by the global hamiltonian. We
show that any h ∈ Z(X) is fixed by T on retractable hypergraphs, so that the unique message-passing
equilibrium coincides yields the true marginals of the global probability distribution. We then provide
with the simplest example of a graph with loops such that T induces a non-trivial dynamical system
on Z(X), as the true potential h∗ to approximate lie outside of the homology class [h] = h+ δA1(X)
message-passing explores.

As numerical studies on graphs have already shown, the number of stationary points grows quickly
with the number of loops. We study the appearance of multiple equilibria in Z(X) ∩ [h] through
singularities of the quotient map Z(X)→ A0(X)/δA1(X), which we relate to the spectral properties
of a pseudo-laplacian operator L describing the linearised diffusion flow, and finally provide with what
we believe to be the first explicit examples of bifurcations on graphs.
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6.1 Uniqueness and Retractability

In this section, we prove the uniqueness of a stationary state on a class of retractable hypergraphs
which generalise trees. These hypergraphs also appear in the pseudo-marginal extension problem, to
which Vorob’ev gave a criterion of solvability in [32], and are thus related to what he called regular
complexes.

Precising first the sheaf structure of the manifold Z(X) of consistent potentials, we then exhibit
an extensibility property of Z(X), on which the construction of the unique equilibrium by successive
extension crucially relies.

Note that this section carries out proofs on a generic sheaf denoted by F (X), mainly purposed to
represent Z(X) or one of its tangent fibers. Generic notations were also intended so as to leave some
space for an extension of the results to higher-degree analogs of Z(X), e.g. cocycles of Ker(∇µ).

6.1.1 Hypergraph Geometry and Sheaves

Definition 6.1. A hypergraph X will be called a simple extension1 of X ′ ⊆ X when:

X = Λα tΛβ X
′ (6.1)

or equivalenlty, when X = Λα ∪X ′ and X ∩X ′ = Λβ for some α ∈ X and β ∈ X ′.

Definition 6.2. A hypergraph X is called a normal extension2 of X ′ if there exists a sequence:

X = Xn ⊇ . . . ⊇ X0 = X ′ (6.2)

of simple extensions from each Xi to Xi+1.

Definition 6.3. A hypergraph X is called retractable if it is a normal extension of {∅}.

Figure 6.2: retractable hypergraphs (+) and other ones (x).

Note that a graph X is a normal extension of X ′ if and only if it retracts onto X ′ in the usual
sense. In particular, a graph X is retractable if and only if it is a tree, i.e. an acyclic graph.

Definition 6.4. The Alexandrov topology of a hypergraph X ⊆ P(Ω) is the topology generated by the
basis of open neighbourhoods (Λα)α∈X .

Proposition 6.5. Y ⊆ X is open for the Alexandrov topology if and only if α ∈ Y implies Λα ⊆ Y .

Proposition 6.6. Given a sub-hypergraph Y ⊆ X, the restriction map rY X : A(X)→ A(Y ) commutes
with the zeta transforms of A(X) and A(Y ) if and only if Y is open in X.

A(X) A(X)

A(Y ) A(Y )

rYX

ζX

rYX

ζY

(6.3)

1In other words, there is a maximal cell α and a strict subcell β ⊂ α such that every γ 6⊆ α intersects α inside β.
When X is a graph, this implies that α is a terminal edge i.e. an edge with at most one vertex linked to another edge.

2We try to remain close to the vocabulary of Vorob’ev, who called a sequence of simple extensionsX = Xn ⊇ . . . ⊇ X0
a normal series of X. See [32] for his interesting characterisations of retractable (called regular) simplicial complexes.
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Proposition 6.7. The set Z(X) of consistent interaction potentials forms a subsheaf of A0(X) for
the Alexandrov topology.

Proof. For every u ∈ Z(X) and Y ⊆ X, one has u|Y ∈ Z(Y ) as from DY (ζY ·u|Y ) = DX(ζX ·u)|Y = 0 by
proposition 6.6. The sheaf colimit property is satisfied by construction as Z(X) = colimαZ(Λα).

6.1.2 Cocyclic and Extensible Sheaves

Definition 6.8. A subsheaf F (X) of A(X) will be said cocyclic if:

∀u ∈ A(X) ∃!v = u+ δϕ ∈ F (X) (6.4)

Equivalently, F (X) is cocyclic if it is a section of the fibration A(X)→ A(X)
/
δA(X).

Letting ∇ = δ∗ for a given metric, the space Ker(∇) ⊆ A(X) of cocycles defines, by orthogonality
of Ker(∇) and Im(δ), the fundamental example of a globally cocyclic subsheaf of vector spaces. This
property is in turn equivalent to the uniqueness of equilibrium of the heat equation u̇ = δ(∇u) inside
the homology class of any h ∈ A0(X).

Definition 6.9. The subsheaf F (X) is said locally cocyclic if F (Λα) is cocyclic for all α ∈ X.

Definition 6.10. Given a locally cocyclic subsheaf F (X) ⊆ A(X), we denote by Tα : A(X)→ A(X)
the map extending Tα : A(Λα)→ F (Λα) identities i.e.

Tα(u)β =
{
uβ + δβϕ if β ⊆ α
uβ otherwise (6.4.bis)

When F (X) = Z(X) is the manifold of consistent potentials, theorem 5.31 will imply that the map
u 7→ Tα(u) is realised by one-step iteration of the µBP1 diffusion algorithm with messages restricted3

to Λα i.e. ϕ ∈ A1(Λα) is given by −Dµ(u)|Λα , as precised by the following proposition.

Proposition 6.11. The subsheaf Z(X) of consistent interaction potentials is locally cocyclic.

Proof. Given α ∈ X and u ∈ A(Λα), let U = ζ(u) and let Vβ = Fβα(Uα) for every β ⊆ α. By
consistency of V , the associated interaction potentials v are in Z(Λα). One also has v − u ∈ δA1(Λα)
as defining for instance ϕ ∈ A1(Λα) by:

ϕαβ =
∑
β→γ

µβγ Fγα(Uα − Uγ) (6.5)

and ϕβγ = 0 for all β 6= α yields U + ζ · δϕ = V . Note the correspondence with theorem 5.31.

Furthermore, assume v = u+δA1(Λα) with u, v ∈ Z(Λα). Denoting by U, V ∈ A(Λα) the associated
local hamiltonians, the Gauss formula 2.3 implies Uα = Vα while consistency gives Vβ = Uβ = Fβα(Uα)
for every β ∈ Λα. Hence u and v coincide on Λα by Möbius inversion.

Belief propagation derives from the flux functional Φ(u) = D(ζ · u) and we shall see that the sheaf
Z(X) = {D ◦ ζ = 0} of manifolds in A0(X) is in general only locally cocyclic. To prove the uniqueness
of its equilibria when the hypergraph X is retractable, we have to show that the locally cocyclic sheaf
Z(X) is then globally cocyclic. Our proof is constructive and relies on another property of Z(X),
related to the extension of sections u ∈ Z(X ′) along normal extensions X ⊇ X ′, under appropriate
homological constraints.

3It is common and often advised to update regions asynchronously: for instance draw a random α, compute messages
below α, update beliefs accordingly [34]. Although argued to perform better, asynchronous variations keep the same
stationarity conditions and homological structure of the synchronous algorithm.
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Definition 6.12. Given a subsheaf F (X) of A(X) and X ′ ⊆ X, we introduce the subsets of A(X):

− F (X,X ′) =
{
u ∈ A(X)

∣∣ u|Λα ∈ F (Λα) for all α ∈ X rX ′
}

− F (X|X ′) =
{
u ∈ F (X,X ′) +A(X ′)

∣∣ u|X′ ∈ F (X ′)
}

Note that according to this definition, F (X,X) = A(X) while F (X|X) = F (X).

Definition 6.13. A locally cocylic sheaf F (X) of A(X) is said extensible if for every α → β in X
and every u ∈ F (Λα|Λβ), its unique homologous representative v ∈ F (Λα) extends u|Λβ .

F (X) is extensible if and only if the following commutative diagram is commutative for all α ⊇ β:

F (Λα|Λβ) F (Λα)

F (Λβ)

Tα

(6.6)

The subsheaf F (X|X ′) is by definition the inverse image of F (X ′) ⊆ A(X ′) under the restriction
map F (X,X ′) +A(X ′)→ A(X ′). In the following commutative diagram, where all horizontal arrows
are inclusions and all descending arrows are restrictions to X ′, the central square is hence a pull-back
square.

F (X) F (X|X ′) F (X,X ′) +A(X ′) A(X)

F (X ′) A(X ′)

(6.7)

As we shall see, whenever X is a normal extension of X ′ and F (X) is extensible, there exists reciprocal
projections f : A(X)→ F (X,X ′) and g : F (X|X ′)→ F (X) preserving the homological constraints.

Proposition 6.14. The subsheaf Z(X) of consistent interaction potentials is extensible.

Proof. Given α ⊇ β in X and u ∈ Z(Λα|Λβ), let us write u = h + b with h ∈ Z(Λα) and b ∈ A(Λβ)
such that u|Λβ ∈ Z(Λβ). Letting H = ζ(h) and B = ζ(b) and following the proof of 6.11, the unique
homologous v ∈ Z(Λα) is defined by Möbius inversion of the local hamiltonians (Vγ) defined for every
γ ∈ Λα by:

Vγ = Fγα(Hα +Bβ) (6.8)

For all β ⊆ α, we have by consistency of H on Λα and by consistency of U = H +B on Λβ :

Vγ = Fγβ
(
Fβα(Hα) +Bβ

)
= Fγβ(Hβ +Bβ) = Hγ +Bγ = Uγ (6.9)

It follows that v|Λβ = u|Λβ by 6.6, implying commutativity of restrictions with Möbius inversions.
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6.1.3 Forward and Backward Passes

Theorem 6.15. Assume X is a normal extension of X ′ and F (X) ⊆ A(X) is an extensible subsheaf.
Then every u ∈ F (X|X ′) admits a unique homologous representative v ∈ F (X), which extends u|X′ .

Theorem 6.16. When X is retractable, any extensible subsheaf F (X) ⊆ A(X) is globally cocyclic.

Proposition 6.17. Given a normal sequence X = Xn ⊇ . . . ⊇ X0 = X ′ with Xj = Λαj tΛβj Xj−1
for all n ≥ j ≥ 1 and an extensible subsheaf F (X) ⊆ A(X), the double pass:

f = Tαn ◦ · · · ◦ Tα1 ◦ · · · ◦ Tαn (6.10)

maps A(X) to the subspace F (X,X ′) formed by those u such that u|Λα ∈ F (Λα) for all α ∈ X rX ′.

Proof. Reasoning by induction on the length of the normal sequence, first consider X1 = Λα1 tΛβ1 X
′.

Given u ∈ A(X1), let v = Tα1(u) so that v|Λα1 ∈ F (Λα1) by definition of Tα1 , and v ∈ F (X1, X
′).

Assume now that fj−1 = Tαj−1 . . . Tα1 . . . Tαj−1 does induce a map from A(Xj−1) to F (Xj−1, X
′) for

some 1 < j ≤ n, and let u ∈ A(Xj).
− forward pass: letting ũ = Tαj (u), we have ũ|Λαj ∈ F (Λαj ).

− induction: letting ṽ = fj−1(ũ), we have ṽ|Xj−1 ∈ F (Xj−1, X
′). In particular ṽ|Λβj ∈ F (Λβj )

while ũ|Λαj ∈ F (Λαj ) implies ṽ|Λαj ∈ F (Λαj |Λβj ).
− backward pass: letting v = Tαj (ṽ) we have v|Λαj ∈ F (Λαj ) extending ṽ|Λβj by extensibility.

Hence Tαj . . . Tα1 . . . Tαj (u) lies in F (Xj , X
′) for all 1 ≤ j ≤ n and f maps A(X) to F (X,X ′).

Proposition 6.18. Given a normal sequence X = Xn ⊇ . . . ⊇ X0 = X ′ with Xj = Λαj tΛβj Xj−1
for all n ≥ j ≥ 1 and an extensible subsheaf F (X) ⊆ A(X), the backward pass:

g = Tαn ◦ · · · ◦ Tα1 (6.11)

maps F (X|X ′) to F (X).

Proof. Assume first that u ∈ F (X1|X ′), which is equivalent to u|Λα1 ∈ F (Λα1 |Λβ1) and u|X′ ∈ F (X ′).
The extensibility property ensures that v|Λα1 extends u|Λβ1 so that v extends u|X′ and v ∈ F (X1).
Assuming now that gj−1 = Tαj−1 . . . Tα1 maps F (Xj−1|X ′) to F (Xj−1) for some 1 < j ≤ n, let
u ∈ F (Xj |X ′).
− induction: letting ṽ = gj−1(u) we have ṽ|Xj−1 ∈ F (Xj−1). In particular ṽ|Λβj ∈ F (Λβj ), so that
ṽ|Λαj ∈ u|Λαj +A(Λβj ) and u|Λαj ∈ F (Λαj ) +A(Λβj ) implies ṽ|Λαj ∈ F (Λαj |Λβj ).

− backward pass: letting v = Tαj (ṽ) we have v|Λαj ∈ F (Λαj ) extending ṽ|Λβj by extensibility.

Hence Tαj . . . Tα1(u) lies in F (Xj) for all 1 ≤ j ≤ n and g maps F (X|X ′) to F (X).

Proposition 6.19. Given a normal extension X ⊇ X ′ and an extensible subsheaf F (X) ⊆ A(X), the
double pass and backward pass maps:

f : A(X)→ F (X,X ′) and g : F (X|X ′)→ F (X) (6.12)

are uniquely defined, under the constraint that the image of u lies in u+ δA(X,X ′).

Proof. Reasoning by induction on the length of a normal sequence, first assume that X = Λα tΛβ X
′.

If u, v ∈ F (X,X ′) with v = u + δϕ and ϕ ∈ A(Λα), then v|Λα = u|Λα by cocyclicity of F (Λα) and
δϕ = 0. Assume now that X = Λα tΛβ X1 with X1 ⊇ X ′, and that for all u, v ∈ F (X1, X

′), if v lies
in u+ δA(X1, X

′) then v = u. Given u, v ∈ F (X,X ′) with v = u+ δϕ and ϕ ∈ A(X,X ′), let us write
δϕ = δϕ+ + δ(ϕ|Λβ ) + δϕ− with ϕ+ ∈ A(Λα) and ϕ− ∈ A(X1, X

′).
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− no forward pass: letting ṽ = Tβ(u+ δϕ−), we have ṽ|Λα ∈ F (Λα) + δA(Λβ) and u|Λβ ∈ F (Λβ)
so that ṽ|Λα ∈ F (Λα|Λβ). Extensibility implies that v = Tα(u+ δϕ−) = Tα(ṽ) extends ṽ|Λβ .

− induction: as v|X1 = ṽ|X1 lies in u|X1 +δA(X1, X
′) we have v|X1 = u|X1 by induction hypothesis.

− no backward pass: in particular δ(ϕ)|X1 = 0 so that v|Λα = u|Λα + δϕ+ lies in u|Λα + δA(Λα),
and v|Λα = u|Λα by local cocyclicity.

Hence v = u for every u, v ∈ F (X,X ′) such that v ∈ u + δA(X,X ′). It follows that the double pass
map f : A(X) → F (X,X ′) associated to any given normal sequence is independent of the sequence.
Uniqueness of the backward pass map g : F (X|X ′) → F (X) is also obtained by applying the same
uniqueness argument to any u, v ∈ F (X) ⊆ F (X,X ′) such that v ∈ u+ δA(X,X ′).

6.2 Relations with Global Sections

In this section, we show that the unique equilibrium on retractable hypergraphs coincides with the
true Gibbs state marginals one seeks to approximate.

In general, we introduce a global passmap T : A0(X)→ Z(X) defined by the effective energies of the
global hamiltonian and their associated interaction potentials and investigate some of its homological
properties. As T (h) may not be homologous to h in general, we signal that the true Gibbs state
marginals may not be accessible from message-passing schemes. After showing that T coincides with
the double pass maps of the previous section on retractable hypergraphs, we give an explicit example
where T induces a non-trivial iteration over the manifold of equilibria.

6.2.1 Global Pass

Definition 6.20. We call global completion of X ⊆ P(Ω) the hypergraph X̃ = X ∪ {Ω}.

Definition 6.21. Given a global hamiltonian HΩ =
∑
α∈X

hα in AΩ, let us define:

− the true effective hamiltonians by H∗α = FαΩ(HΩ) for all α ∈ X̃,
− the true effective potentials by h∗ = µ ·H∗,
− the true Gibbs state marginals by p = [e−H∗ ],

each of which being consistent, as D(H∗) = 0 implies h∗ ∈ Z(X̃) and p ∈ Γ(X̃).

Definition 6.22. We call global pass T : A0(X) → A0(X) the smooth map associating to potentials
h ∈ A0(X) the true effective potentials h∗ ∈ Z(X) deriving from the total energy HΩ =

∑
α hα.

The global pass resorts to the global hamiltonian and should be thought of as an extrinsic action
on A0(X), uncomputable in practice. The following diagram best illustrates the procedure:

AΩ

A0(X) A0(X)

µ ◦ F−ΩζΩ

T

(6.13)

It is good to view T as a map from A0(X) to itself as we shall see its iterations may not be trivial. Its
image is however contained in Z(X) by definition, while it induces a map in homology:

T̄ : H0(X;A) −→ Z(X) (6.14)

Whether this map is a diffeomorphism or not is a natural and important question, closely related to
the uniqueness or multiplicity of message-passing equilibria. We shall see its answer to depend on the
geometry of the underlying hypergraph.
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Proposition 6.23. Assume h̃ ∈ Z(X̃) extends h ∈ Z(X). Then h̃Ω = 0 implies T (h) = h.

Proof. Letting HΩ =
∑
α hα and H̃ = ζ̃ · h̃, then h̃Ω = 0 implies H̃Ω = HΩ. If furthermore h̃ ∈ Z(X̃),

then consistency implies that H̃ coincides with the true effective hamiltonians H∗ and T (h) = h.

Proposition 6.24. Given h ∈ Z(X) let h̃∗ = T̃ (h) ∈ Z(X̃). Then T (h) = h implies h̃∗Ω = 0.

Proof. An immediate consequence of the following proposition.

Remarks. Due to the apparent reciprocity between propositions 6.23 and 6.24, one may be
tempted to close an implication loop and it seems important to mention that:

− (T (h∗) = h∗) 6⇒ (h̃∗Ω = 0)
Although T (h∗) = T (h) gives FαΩ(HΩ) = FαΩ(H∗Ω) for all α ∈ X, this may not imply H∗Ω = HΩ.
We do have a global interaction decomposition AΩ = ZΩ⊕BΩ, however HΩ ∈ BΩ does not imply
e−HΩ ∈ BΩ in general. Hence ΣαΩ(e−HΩ) = ΣαΩ(e−H∗Ω) for all α ∈ X does not imply h̃∗Ω = 0.

− (h̃∗Ω = 0) 6⇒ (T (h) = h)
Even when h ∈ Z(X) and its extension by zero h̃ lies in Z(X̃), assuming h∗ homologous to h in
A0(X) does not imply h∗ = h, as there may exist multiple u = h+ δϕ ∈ Z(X).

Proposition 6.25. Given h ∈ Z(X), let h̃∗ = T̃ (h) and let h∗ = h̃∗|X .

h̃∗Ω =
∑
α∈X

hα −
∑
α∈X

h∗α (6.15)

Proof. Letting HΩ =
∑
α hα and H̃∗ = ζ̃ · h̃∗, we have H̃∗Ω = HΩ by definition of the true effective

hamiltonians. Isolating the contribution of Ω to the total energy then gives HΩ = h̃∗Ω +
∑
α h
∗
α.

6.2.2 Retractable Hypergraphs

Theorem 6.26. Assume X ⊆ P(Ω) is retractable. For every collection of interaction potentials
h ∈ A0(X) the unique u = h+ δϕ ∈ Z(X) coincides with the true effective potentials h∗ = T (h).

Equivalently, the theorem asserts that for any h ∈ A0(X), extending the unique homologous
potentials u = h+ δϕ ∈ Z(X) given by theorem 6.16 to X̃ = X t {Ω} does yield a section ũ ∈ Z(X̃).
It must then coincide with the unique h̃∗ = h̃+ δϕ̃ ∈ Z(X̃) defined from h̃ ∈ A0(X̃) extending h, and
of which the global pass h∗ ∈ Z(X) is the restriction:

A0(X̃) Z(X̃)

A0(X) Z(X)

T̃

f

(6.16)

The existence of the right ascending arrow hence implies commutativity in the above diagram, and
the proof of the theorem will rely on the following proposition.

Proposition 6.27. Given Ω = α tβ α′, assume X = Λα tΛβ Λα′ and let X̃ = X t {Ω}. Then:

Z(X̃) ∩A0(X) ' Z(X) (6.17)

Equivalently, if Ũ = ζ̃ · u ∈ A0(X̃) with u ∈ A0(X), then D(Ũ) = 0 if and only if D(Ũ)|X = 0.
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Proof. Given any Ũ ∈ A0(X̃), first observe that D(Ũ) = 0 is equivalent to Uγ = FγΩ(UΩ) for all γ ∈ X.
The assumption X = Λα∪Λα′ implies that FγΩ may be factorised either as Fγα ◦FαΩ or as Fγα′ ◦Fα′Ω
depending on whether γ ∈ Λα or γ ∈ Λα′ , so that D(Ũ) is actually equivalent to:

D(Ũ)Ω→α = 0 and D(Ũ)Ω→α′ = 0 and D(Ũ)|X = 0 (6.18)

Assume now that Ũ = ζ̃ · u with u ∈ A0(X). Observing that Ω r α = α′ r β, applying proposition
4.10 to the effective energy of ŨΩ − Ũα = Ũα′ − Ũβ which lies in Aα′ gives:

D(Ũ)Ω→α = FαΩ
( ∑
γ∈XrΛα

uγ

)
= Fβα

′
( ∑
γ∈Λα′rΛβ

uγ

)
= D(Ũ)α′→β (6.19)

Interverting α and α′ similarly yields D(Ũ)Ω→α′ = D(Ũ)α→β . For all Ũ ∈ ζ̃ · A0(X) we hence have
D(Ũ) = 0 if and only if D(Ũ)|X = 0, and it follows that the image of Z(X) in A0(X̃) by the natural
inclusion A0(X) ⊆ A0(X̃) coincides with the intersection of Z(X̃) with A0(X).

Proof of theorem 6.26. Reasoning by induction on the length of X, the statement is tautological when
X already contains Ω. Given a normal extension X = Λα tΛβ X

′ with X ′ ⊆ P(Ω′), assume now that
for every u′ ∈ Z(X ′) its extension ũ′ to X̃ ′ = X ′ ∪ {Ω′} lies in Z(X̃ ′). Consider the hypergraphs:

Y = X ∪ {Ω′} and Ỹ = Y ∪ {Ω} (6.20)

Given any u ∈ Z(X), let us show that its extension ũ to X̃ by zero lies in Z(X̃), by applying the
previous proposition in Ỹ , global completion of Y = Λα tΛβ ΛΩ′ with ΛΩ′ = X̃ ′.

− u′ = u|X′ ∈ Z(X ′) extends to ũ′ ∈ Z(X̃ ′) by induction hypothesis,

− v ∈ Z(Y ) defined from u|Λα ∈ Z(Λα) and ũ′ ∈ Z(ΛΩ′) extends to ṽ ∈ Z(Ỹ ) by proposition 6.27,

− ṽ ∈ Z(Ỹ ) restricts to ũ ∈ Z(X̃) as D(Ṽ ) = 0 implies D(Ṽ )|X̃ = D(Ũ) = 0, where Ṽ and Ũ

denote their zeta transforms in A0(Ỹ ) and A0(X̃) respectively.

The induction shows that for every h ∈ A0(X), its unique homologous representative u = f(h) ∈ Z(X)
defined by double pass extends to ũ ∈ Z(X̃). The global pass depending only on the total energy, we
have T (u) = T (h) = h∗, while ũ ∈ Z(X̃) with ũΩ = 0 implies T (u) = u according to 6.23.

6.2.3 Loop Effective Potential

The true effective potentials h∗ are not homologous to h in general.

Figure 6.3: A triangle of binary variables.

The simplest example of this phenomenon is given by the the Ising model on the triangular graph
with binary variables xi = ±1 on each vertex, as depicted in figure 6.3. Consider a uniform coupling
constant w and no external field for simplicity, so that interaction potentials are given by:

hij(xi, xj) = −w xi xj and hi(xi) = 0 (6.21)
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Letting H = ζ · h denote the local hamiltonians and q = [e−H ], the local Gibbs states q ∈ Γ(X) are
consistent for any value of w. Considering that Ai = R |+〉 ⊕ R |−〉 and Aij = Ai ⊗ Aj , the following
matrix representations4 will be convenient:

qij = 1
4 cosh(w)

[
ew e−w

e−w ew
]

and qi = 1
2

[
1
1

]
(6.22)

Writing q = Q(w), this defines a one-parameter family Q : R→ Γ(X) of consistent statistical fields.

Consider now the true effective hamiltoniansH∗ ∈ A0(X) defined from the total energyHΩ =
∑
hij .

In addition to the direct coupling hij , the true effective hamiltonian H∗ij accounts for the interaction
of i and j through k, expressed by the effective energy of hik + hkj .(

H∗ij −Hij

)
(xi, xj) = − ln

∑
xk∈{±1}

e−w xk(xi+xj) (6.23)

Introducing the real function f : y 7→ ln
(

ey + e−y
)
, which satisfies f(−y) = f(y), we have:

H∗ij −Hij = −
[
f(2w) f(0)
f(0) f(2w)

]
(6.24)

Letting then g(w) = 1
2
(
f(2w)− f(0)

)
we may write up to the constant term 1

2
(
f(2w) + f(0)

)
:

H∗ij −Hij ' g(w)
[
−1 1

1 −1

]
mod R (6.25)

It follows that H∗ij −Hij is a non-zero element of Zij ⊕R for every w 6= 0 and does not lie in Ai +Aj .
This in particular implies that H∗−H cannot belong to ζ ·δA1(X), equivalently that the true effective
potentials h∗ are not homologous to h in A0(X). A loop effective potential h̃∗Ω = h̃∗ijk measures this
obstruction, it may be computed using proposition 6.25. Up to a constant free energy term, h̃∗ijk is
the sum of the contributions Hij −H∗ij of each edge.

The true local Gibbs states p ∈ Γ(X) remain in the-one parameter family as p = Q(w′) is given by:

pij = 1
4 cosh(w′)

[
ew′ e−w′

e−w′ ew′
]

with w′ = w + g(w) (6.26)

Iterating the global pass T : A0(X) → A0(X) hence defines sequences of couplings w ∈ RN by the
recurrence relation:

wn+1 = wn + g(wn) (6.27)

and as g(w) = 1
2 ln cosh(2w) behaves like a soft absolute value, with |g′| < 1, one quickly sees that:

lim
n
wn =

{
0 if w ≤ 0

+∞ otherwise (6.28)

This should be interpreted by observing that the effective contribution of hik + hkj is always ferro-
magnetic, whatever the sign of w, as the path (i, k, j) from i to j is of even length.

A symmetric behaviour should be expected for the Ising model on the square graph, while in this
case a finer description should also keep track of order 3 interaction potentials h∗ijk, by embedding the
graph inside the 3-simplex. Finally, although allowing weights wij to differ from edge to edge would
induce a more interesting dynamic on a higher dimensional space of parameters, manual computations
may quickly become cumbersome and call for numerical simulations.

4Note that the ring structure of Aij is induced by the element-wise or Hadamard product, while the matrix-vector
product of qij with fj ∈ Aj yields the conditional expectation Eij [ fj | i ] ∈ Ai.
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6.3 Bifurcations and Singularities

In an effort to witness the emergence of multiple equilibria, this section characterises bifurcation
states as consistent interaction potentials u whose tangent fiber TuZ(X) is not transverse to δA1(X).
These bifurcations correspond to singularities of the homological projection Z(X)→ H(X), which we
relate to spectral properties of a twisted laplacian5 operator L = δ∇µ describing the linearised diffusion
flow, we finally exhibit explicit examples of such singularities on simple graphs with two loops.

6.3.1 The Transversality Problem

At the level of local hamiltonians, the tangent fibers of the consistent manifold C = ζ ·Z bear a con-
venient probabilistic and cohomological description, involving the linearised effective energy gradient
∇ = D∗ defined in 5.7:

Proposition 6.28. Let U ∈ C and p = [e−U ]. Then TUC = Ker(∇p) is defined by the equations:

∇p(V )αβ = Vβ − Eαpα
[
Vα
∣∣β ] = 0 (6.29)

Let us denote by 0̄ = µ · ln[1] the origin of Z, projection of 0 ∈ Z ′ onto Z along R0.

Theorem 6.29. The tangent space Z0 = T0̄Z is globally cocyclic:

A0 = Z0 ⊕ δA1 (6.30)

The homological projection P : A0 → Z0 is moreover explicitly given by interaction decomposition.

Proof. Letting ϕβγ = zγ(uβ) we have by interaction decomposition:

(u+ δϕ)β =
∑
α′⊇β

zβ(uα′) (6.31)

Hence v = u+ δϕ defines the unique collection of interaction potentials in T0̄Z homologous to u ∈ A0.
The map P : u 7→ v coincides with the interaction projection of 2.9.

When the underlying hypergraph is retractable, theorem 6.16 implies that TuZ is cocyclic for all
u ∈ Z. Note that even in this case, we do not have an explicit and convenient formula such as (6.31) to
compute the projection of A0 onto TuZ along the fibers of δA1. However a linearised message passing
scheme will produce the desired result in finite time, for instance by double pass as in proposition 6.17.

In general, the fibers of TZ are still related to the interaction decomposition through the following
proposition. The obtained formula shows how moving u along Z rotates Z0: but while doing so, it
may very well happen that TuZ meets δA1. One should hence not expect to derive from its apparent
simplicity a homologous projection of A0 onto TZ.

Proposition 6.30. Let p = [e−ζ·u] denote local Gibbs states. Then:

TuZ = (µ ◦ p−1 ◦ ζ) · Z0 (6.32)

where p−1 denotes the region-wise multiplication operator vα 7→ vα/pα.

Proof. By theorem 2.15, in A0 we have Ker(d) = ζ · Z0. The change of metric is simply reflected by
conjugating with the diagonal multiplication operator p = [e−ζ·u]:

∇ = p−1 · d · p (6.33)

Hence Ker(∇) = p−1 ·Ker(d), while by definition 5.7 of ∇ we have TuZ = Ker(∇◦ζ) = µ ·Ker(∇).
5Although the present problem does share many similiarities with classical harmonic theory, let us already emphasise

that, in addition to the non-linearity of δDµ, the conjugation by combinatorial transforms in its linearised flow breaks
the adjunction of the boundary δ with the differential ∇µ = µ ◦ ∇ ◦ ζ.
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6.3.2 Twisted Laplacian and Singularities

Let us denote by L : A0 → TA0 the non-linear diffusion operator defined in 5.29:

L = δDµ where Dµ = µ ◦ D ◦ ζ (6.34)

As a vector field, L fixes Z. The restriction of its tangent map L∗ : TA0 → T (TA0) hence defines
a linear endomorphism of the tangent bundle above Z, describing the linearised action of L in an
infinitesimal neighbourhood of Z.

Definition 6.31. We call twisted laplacian the linearised flow L = δ∇µ induced by L∗ above Z:

L : TZA0 −→ TZA0 (6.35)

Proposition 6.32. For every v ∈ TZA0, we have L(v) = 0 if and only if v ∈ TZ, i.e.:

Ker(L) = TZ (6.36)

Proof. The local faithfulness property 5.37 of φ = Dµ implies that L = 0 is a local equation of Z.

Consider now the sub-bundle B ⊆ TZA0 spanned by δA1. By definition of L = δ∇µ, we have:

Im(L) ⊆ B (6.37)

Hence L could be factorised by a map from T⊥Z to B having same dimension, as ∇ = δ∗ implies
Ker(∇) = Im(δ)⊥ and TZ = µ · B⊥. In constrast with the harmonic case, TZ and B may however
intersect and fail to span TA0.

Definition 6.33. We denote by L′ : B → B the restriction of L to boundaries:

L′ ∈ Hom(B,B) ⇔ L′ ∈ C∞
(
Z, End(δA1)

)
(6.38)

Proposition 6.34. The kernel of L′ is the intersection Ker(∇µ) ∩ Im(δ), equivalently:

Ker(L′) = TZ ∩ B (6.39)

Proof. This is a direct consequence of proposition 6.32 and the definition of L′.

When the underlying hypergraph is retractable, the cocyclicity of Z implies TZA0 = TZ ⊕ B so
that L′ is invertible and defines an isomorphism of B onto itself. The double pass 6.17 suggests6 that
L has only positive eigenvalues, the flow of −L hence retracting TZA0 onto TZ.

In general, following Thom’s notations [29] we denote by S0 ⊆ Z the subset where L′ is invertible,
and by Sk ⊆ Z the subset where L′ is of corank k. Then Z has the structure of a stratified space,
with respect to the disjoint union:

Z =
⊔
k≥0
Sk (6.40)

where S̄k contains Sk+1 for all k ≥ 0, and S̄1 consists of the singularities of L′, points where L′ is not
invertible, and TZ ∩ B contains directions of bifurcation.

6The double pass is nothing but a sequential version of L where maximal cells are updated in a specific order.
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Theorem 6.35. The singular set S̄1 of L′ is nowhere dense in Z.

Proof. Denote by M ⊆ Ker(d) the open subset of Ker(d) ⊆ A∗0 formed by consistent positive densities.
M is analytically diffeomorphic to Z, as q 7→ − ln(q) is an analytic parametrisation7 of ζ · Z, and we
denote by f : M −→ Z the analytical diffeomorphism then obtained by Möbius inversion.

Letting N = A0/δA1 denote the homology of A0, consider a projection π : A0 −→ N as given for
instance by (6.31). The composed projection g = π ◦ f and its tangent map:

g∗ : TM −→ TN (6.41)

are analytic, while f∗ defines a diffeomorphism of Ker(g∗) onto TZ ∩ B by construction. By Sard’s
theorem, the singular set of g where det(g∗) = 0 has an image of measure zero in N . In particular,
det(g∗) cannot identically vanish, as 6.29 implies that g(M) contains an open neighbourhood8 in N
by transversality of T0̄Z and δA1.

The map det(g∗) : M → R is analytic and admits an extension detC(g∗) : MC → C toMC ⊆ A∗0⊗C.
If det(g∗) vanished on an open set in M , then detC(g∗) would also vanish on an open subset in MC,
hence everywhere by analytic continuation. As this would violate Sard’s theorem, it follows that the
regular set where g∗ is invertible is dense in M , and TZ ∩ B = {0} almost everywhere.

6.3.3 The Case of Graphs

We now specialise to graphs as the equations characterising bifurcations in TZ ∩ B there show a
remarkable resemblance with the Kirchhoff rule for the conservation of electric currents in a circuit.
The remaining major difference is that our currents ϕ ∈ A1 are function-valued, while constant scalars
cannot contribute to the creation of bifurcations, as the second part of the following proposition implies.
These conservation laws also give a very simple explanation to the absence of bifurcations on trees.

Proposition 6.36. If v = δϕ is a bifurcation in TuZ ∩ B, then ϕ ∈ A1 is solution of:

ϕjk→k = Ejk
[∑
i6=k

ϕij→j

∣∣∣ k ] mod R (6.42)

for every edge-vertex pair jk → k, conditional expectations being taken with respect to [e−ζ·u] ∈ Γ.
Moreover, Ei[vi] = Eij [vij ] = 0 for all i, j, so that v 6= 0 implies that ϕ cannot belong to R1.

Proof. If v = δϕ ∈ Ker(∇µ), the variation of hamiltonians V = ζ · v satisfies ∇(V )jk→k = 0 where:

Vk =
∑
i′

ϕi′k→k mod R and Vjk =
∑
i′ 6=j

ϕi′k→k +
∑
i 6=k

ϕij→j mod R (6.43)

neglecting only currents of the form ϕij→∅ and ϕi→∅, so that Vk = Ejk[Vjk | k] does simplify to
(6.42) in Ak mod R. To prove the second statement, observe that the equations ∇(V )k→∅ = 0 and
∇(V )jk→∅ = 0 yield after a few obvious simplifications:

ϕk→∅ = E
[∑

i′

ϕi′k→k

]
and ϕjk→∅ = −E

[
ϕjk→j + ϕjk→k

]
(6.44)

The first kind of equations grouping pairs ij → j by the vertex j, and the second kind grouping pairs
ij → j by the edge ij, it follows that:

δ(ϕ)∅ =
∑
i

ϕi→∅ +
∑
ij

ϕij→∅ = 0 (6.45)

Hence V∅ = v∅ = δ(ϕ)∅ = 0, giving E[Vij ] = E[Vi] = 0 for all i, j by ∇(V )ij→∅ = ∇(V )i→∅ = 0. The
zero-mean statement on interaction potentials finally follows by Möbius inversion.

7The coordinate H(x) is given by composing the linear evaluation map q 7→ q(x) with the analytic map y 7→ − ln(y).
8In fact g is surjective, as implied by the existence theorem 5.3 of belief propagation equilibria.
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The conditional expectation Ejk[− |k], which couples ϕjk→k with incoming currents ϕi′j→j , consists
of the orthogonal projection of Aj onto Ak for the metric induced by a local probability pjk on Ajk.
Note that if p = [1] were the uniform distribution, we would have Aj ⊥ Ak for all jk and (6.42) would
obviously not have any non-trivial solution, as we already know from the transversality Z0 with δA1.
However in general, Aj is not orthogonal to Ak as interaction brings correlation accross variables.

Definition 6.37. Given a chain i0, . . . , in and a loop j0, . . . , jn in the underlying graph, we introduce
the following definitions for applying successive conditional expectations along edges:
− Ekj = Ejk[− |k] for the edge operator projecting Aj to Ak,
− Cin...i0 = Einin−1 ◦ · · · ◦ Ei1i0 for the chain operator mapping Ai0 to Ain ,
− Ljn...j0 = Ej0jn ◦ · · · ◦ Ej1j0 for the loop operator mapping Aj0 to itself.

As projector of Ajk, we have Ejk = (Ekj)∗ so that Ci0...in = (Cin...i0)∗ and Lj1...jnj0 = (Ljn...j1j0)∗.

The non-degeneracy of pjk implies that Ekj is of norm strictly smaller than 1 as operator of Ajk,
once restricted to the orthogonal supplement of Aj ∩Ak = A∅ = R. It follows that the spectrum of a
loop operator Ljn...j0 restricted to R⊥ is contained in ]0, 1[, and hence in contrast with the scalar case,
one shall not observe solutions of (6.42) corresponding to a conserved current running along a single
loop. Such solutions only appear in the strong coupling limit, p going to the boundary of Γ and Z
getting asymptotically tangent to B.

True bifurcations in TZ ∩B may however occur when two or more loops can collaborate to sustain
a conserved current. We provide with explicit examples of such bifurcations below. Their simplicity is
remarkable, as previous examples had only been witnessed numerically, apparently starting with Weiss
[33]. Before moving on, it seems important to mention that although non-constructive, mathematical
proofs on the existence of bifurcations have already been given by D. Bennequin in [4] and unpublished
work. The first relied on methods of algebraic geometry and shows the existence of at least three
homologous fixed points on the binary "figure eight".

The second proof is closer to the methods exposed here, as it relies on the present homological
description of message-passing algorithms. The idea is to view (6.42) as an eigenvalue problem:

ϕ = M(ϕ) with M : A1 −→ A1 (6.46)

Applying the Perron-Frobenius therorem, one then shows that along certain paths in the space Z ' Γ
of parameters, the real largest eigenvalue of M has to cross 1. This approach proved the existence of at
least six bifurcations on the simple "figure eight". Avoiding the challenge of producing clever bounds
on the spectrum of M, we satisfy with exhibiting simple solutions of (6.46).

Figure 6.4: (a) Two triangles joined by a vertex. (b) Currents at the junction.

Consider then the "figure eight" graph obtained by joining two triangles i, i+, i− and i′, i′+, i′− by
a common vertex i′ = i, as depicted in figure 6.4. Conservation at the junction (i) and conservation
along each loop (ii) yield two times four equations of the following form:

(i) ϕ+ = E+
(
ψ+ + ψ′+ + ψ′−

)
(ii) ψ+ = C+(ϕ+) (6.47)
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Eliminating the ψ’s then reduces the above to four equations of the form:

ϕ+ = L+(ϕ+) + E+

(
C′+(ϕ′+) + C′−(ϕ′−)

)
(6.48)

Identifying each Aj with R2 and each Ajk with R4 'M2(R), assume that local probabilities on edges
and vertices are all of the same following form (no magnetic fields) for simplicity:

pjk = 1
4

[
1 + a 1− a
1− a 1 + a

]
and pj = 1

2

[
1
1

]
(6.49)

Now each edge operator Ejk[− |j] = 2pjk is represented by the self-adjoint matrix E given by:

E = R−1
[
a 0
0 1

]
R where R = 1√

2

[
1 1
−1 1

]
(6.50)

expressing that we have the non-constant eigenvector y = [ 1 −1 ]T with E(y) = a y. In the quotient of
A0 by R0, each edge operator may hence be represented as multiplication by a ∈ ]−1, 1[ so that (6.48)
reads:

ϕ+ = a3(ϕ+ + ϕ′+ + ϕ′−
)

(6.51)
Assuming that a3 = 1

3 , a bifurcation occurs in the direction of ϕ± = ϕ′± = y.

Let us also prove that this is the only bifurcation in the considered one-parameter family of Z.
Considering that each of the ϕ’s is spanned by [ 1 −1 ]T and using (ϕ+, ϕ−, ϕ

′
+, ϕ

′
−) as coordinates,

the four equations obtained from 6.51 may be written as:

ϕ = Mϕ where M = a3


1 0 1 1
0 1 1 1
1 1 1 0
1 1 0 1

 (6.52)

A reduction of M is easily computed:

M = a3 Q−1


3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

Q where Q = 1√
4


1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1

 (6.53)

Under the constraint |a| < 1, it follows that 1 ∈ Spec(M) if and only if 3a3 = 1 ⇔ a = 3− 1
3 , with

corresponding eigenvector ϕ = [ 1 1 1 1 ]T . One may think of the three remaining eigenvectors of M
as directions for bifurcations occuring at the boundary of Γ, when a → ±1 and the probability of
observing aligned/unaligned neighbouring spins tends to 0/1.

[[add figure]]

Two triangles joined by an edge lead do the following similar set of equations, denoting by a and b
the weights on the outter edges and diagonal of the obtained square respectively:

ϕ = Mϕ where M = a2


b 0 b 1
0 b 1 b
b 1 b 0
1 b 0 b

 (6.54)

which has the same eigenspaces and

M = a2 Q−1


2b+ 1 0 0 0

0 1 0 0
0 0 2b− 1 0
0 0 0 −1

Q where Q = 1√
4


1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1

 (6.55)

So that in the considered two-parameter family of Z, diffeomorphic to the square (a, b) ∈ ]−1, 1[2,
bifurcations occur along the path a = ± 1√

2b+1 .
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